
 1

IAC-15,B4,6B,12,x30427

HIGH INTEGRITY SOFTWARE FOR CUBESATS AND OTHER SPACE MISSIONS

Dr. Carl Brandon, Professor and Director

CubeSat Lab, Vermont Technical College, Randolph Center, VT, USA carl.brandon@vtc.edu

Dr. Peter Chapin, Professor and Software Director

CubeSat Lab, Vermont Technical College, Randolph Center, VT, USA peter.chapin@vtc.edu

ABSTRACT

We currently have an operating single CubeSat launched as part of NASA's ELaNa IV program

on November 19, 2013, the first satellite of any kind launched by a college in New England.
Many CubeSat failures have been attributed to software failures. Of the twelve university
CubeSats that were launched with ours, we are the only one that is functional. Two had partial

contact for a week, one lasted four months, and eight were never heard from. These other
CubeSats primarily used the C language. We are using the most reliable software technology

ever sent into space. We used the SPARK 2005 Toolset and Ada language in the construction of
our software. Ada is used in almost all European Space Agency and many NASA rockets and
spacecraft, and in most European rail systems and nuclear power plants. SPARK is used in

commercial aviation (Rolls-Royce Trent jet engines, ARINC ACAMS system, Lockheed Martin
C130J), military aviation (EuroFighter Typhoon, Harrier GR9, AerMacchi M346), air-traffic

management (UK NATS iFACTS system), rail (numerous signaling applications), and medical
(LifeFlow ventricular assist device) applications.

 We are using SPARK/Ada, with its reduction of errors by a factor of about 100 compared with
C. SPARK is a formally defined programming language and a set of verification tools

specifically designed to support the development of high integrity software, and can formally
verify information flow, freedom from runtime errors, functional correctness, and security and
safety policies.

 Ours is the first spacecraft to use SPARK. We are currently upgrading our CubeSat software to

SPARK 2014, and will then work on improving some of the algorithms in that software. We
would then have a very reliable software platform, CubedOS that other projects could use as a
base for their CubeSat or other spacecraft projects. Our next CubeSat, Lunar IceCube with

Morehead State University (PI), Goddard Space Flight Center (BIRCHES & Lunar transfer
trajectory) and the Jet Propulsion Lab (Iris 2) is self propelled with a Busek iodine ion drive

which will go to the Moon on the Space Launch System EM-1 flight in 2018. This software will
be much more complex, dealing with power management, the ADACS, infrared spectrometer
(BIRCHES), the data and navigation radio (Iris 2), the electrical power system, and aim the

photo voltaic panels and ion thruster. The software will carry out the navigation plan and deal
with ground based commands and upgrades. SPARK's reliability will be necessary for this.

mailto:carl.brandon@vtc.edu
mailto:peter.chapin@vtc.edu

 2

 VERMONT LUNAR

CUBESAT DESCRIPTION

Hardware

The Vermont Lunar CubeSat is a 1U (10cm
x 10cm x 10cm with 0.7cm and 0.65cm legs

on the ends, maximum mass of 1.33kg)
CubeSat. Our mass is 1.01kg. It uses the
aluminum structure and CPU board, using

the Texas Instrument MSP430 processor,
from CubeSat Kit. We used a commercial

electrical power system (EPS) from Clyde
Space in Glasgow, Scotland. This supplied
regulated 3.3V and 5V and raw 8.4V from

the 10Wh battery. It also had three charge
controllers for the six photovoltaic panels on

the sides of the Cubesat. A deployable
crossed yagi antenna system from ISIS in
Delft, Netherlands, for the 70cm and 2m

bands, used by our radio, a Helium-100
from Astrodev with a 2m receiver for uplink

and a 70cm transmitter for downlink. Our
GPS receiver from Novatel was mounted on
an interface board from Astrodev (designed

at the University of Michigan). We made a
board with connectors for the LEDs and

mounting for a GPS antenna with a 33dB
LNA and a VGA camera with built in JPEG
compression. The outer surface of the

satellite had six boards with 29% efficient
photovoltaic cells, four panels with two each

and two panels with one each. All of the
panels also had two high power green LEDs
each.

Vermont Lunar CubeSat before launch.

Software

Our software for the Vermont Lunar

CubeSat is written primarily in SPARK1
2005 (discussed below). Some of the
software metrics are:

5991 lines of code.
4095 lines of comments (2843 are SPARK

annotations).
A total of 10,086 lines (not including blank
lines).

The Examiner generated 4542 verification
conditions, all but 102 were proved

automatically (98%).
We attempted to prove the program free of
runtime errors, which allowed us to suppress

all checks.
The C portion consisted of 2239 lines

(including blank lines).
Additional provers in SPARK 20141 would
allow 100% automatic proofs.

Mission

Our CubeSat was designed primarily as a
technology demonstrator for navigation

components for a hoped for future Lunar
mission. As described below, we are now

working on that mission. Other important
aspects were to gain experience in all
aspects of satellite construction, launch and

operation. In addition, we wanted to show

 3

the superior reliability of the SPARK/Ada
software technology. We applied for and

were accepted in the first group of the
NASA Educational Launch of Nano-

Satellites (ELaNa), and became part of the
ELaNa IV launch. This was a flight
arranged by NASA on an Air Force

Minotaur 1, the ORS-3 launch, to a 500km
altitude, 40.5 degree inclination circular

orbit. The launch occurred on November
19, 2013, from Wallops Island, Virginia.
On this launch were 14 Air Force CubeSats,

2 NASA CubeSats and 12 university
CubeSats in addition to an Air Force TAC-3

larger satellite.

Our ORS-3 launch from Wallops Island.

ELaNa IV results

The Air Force satellites appear to be mostly
successful, but due to the classified nature of

some, we don’t have the details. Both of the
NASA CubeSats were successful.

The university CubeSats were another story.
Eight of the twelve were never heard from.

One fried their batteries on the first day due

to a couple of software errors. One had
partial contact for less than a week. One

worked successfully for four months. Ours
is still fully operational at 22 months, having

travelled 10,000 orbits and 266 million
miles (428 million kilometers). All of the
other university CubeSats had software

primarily written in C.

In addition to inertial measurement data, we
can also command our CubeSat to take
photos and GPS data. Our first photo of

Australia in 2014, and a recent photo from
June 2015 are below.

North coast of Western Australia

Clouds over the ocean

 4

PAST ADA AND SPARK USAGE

Arctic Sea Ice Buoy

Our first project using SPARK/Ada was a
sub-contract to build a prototype Arctic Sea
Ice Buoy with GPS, temperature and wind

speed and direction sensors. It used the
same CubeSat Kit CPU board that was later

used in the Vermont Lunar CubeSat. This
was much simpler software then was later
used in our CubeSat. It allowed us to gain

experience with SPARK/Ada, and develop
the software tool chain that we later used in

our CubeSat. There was no Ada compiler
for the MSP430, so we wrote the software in
SPARK/Ada, then ran it through AdaMagic

(the front end of an Ada compiler which
uses ANSI standard C as the intermediate

language). The C was then compiled with a
C compiler. This resulted in the C software
being proved correct, as it was translated

from the SPARK/Ada source code.

SPARK DESCRIPTIONS AND

CHARACTERISTICS

Toolset

The current version of the SPARK toolset
and language definition is SPARK 2014. It
is a major enhancement over the earlier

SPARK 2005 toolset and language
definition we briefly described in Section

Vermont Lunar CubeSat – Software above.
The SPARK 2014 language supports a much
larger subset of Ada, allowing more natural

designs. The SPARK 2014 toolset uses more
modern theorem provers, and is more easily

extensible to use additional provers as they
become available. The net effect of these
enhancements is that SPARK 2014 is much

easier to use, allowing the developer to
focus more on the problem being solved and

less on working around the idiosyncrasies of
the programming environment.

In this section we give an overview of the

SPARK 2014 toolset and language so the
reader can better understand the nature of

SPARK programming and the advantages it
offers. For a more complete description of
SPARK 2014 see, for example, McCormick-

Chapin-20151.

All current and future software development
done by the CubeSat Laboratory at Vermont
Technical College, including the work

described in Section New Work below, is
being done using SPARK 2014. Unless

otherwise stated all following uses of
SPARK in this paper refer to SPARK 2014.

SPARK 2014 - Toolset

The SPARK tools consist of a modified Ada
compiler together with a verification
condition generator and one or more back-

end theorem provers.

Adacore's GNAT Ada compiler has been
modified to understand the additional
SPARK aspects, described in the next

section, and to verify, upon request,
conformance to the restrictions of the

SPARK language. Certain diagnostic
messages produced by “the SPARK tools”
are actually produced by the modified Ada

compiler before the specialized tools are
run. These are typically messages related to

the structure of the program (i.e., syntax
errors in the SPARK specific constructs).

An additional tool, GNATprove, performs
detailed data and information flow analysis,

described in the next section, and generates
verification conditions for the provers.
Conceptually GNATprove produces a

verification condition, or “check,” for every
place where the Ada language mandates a

runtime check. If these verification
conditions are proved, or “discharged,” it

 5

means the runtime check will never fail.
Examples of such runtime checks include:

out of bounds array access, arithmetic
overflow, division by zero, and some other

things.

In addition the Ada language allows the

programmer to express range constraints on
values to ensure the results of computations

are always in an appropriate range (e.g.,
never negative, always in the range 1 to 100,
etc.) Ada normally includes runtime checks

to verify these constraints; GNATprove
generates verification conditions that, if

discharged, will statically show they never
fail.

Furthermore Ada 2012 allows the
programmer to include pre- and

postconditions on subprograms, as well as
other assertions, that encode higher level
correctness properties (e.g., a sort procedure

produces a sorted permutation of its input).
Again, GNATprove generates verification

conditions that, if discharged, will statically
show those properties will always hold.

At the time of this writing the SPARK tools
ship with two back-end theorem provers,

Alt-Ergo2 and CVC43. Two provers are used
to take advantage of their complementary
strengths; verification conditions unprovable

by one prover might be handled by the
other. It is possible to configure the SPARK

tools to use only one prover or additional
provers obtained separately, such as
Microsoft's Z34.

The GPS integrated development

environment developed by Adacore provides
a convenient front-end to the SPARK tools.
Using the tools can be as easy as selecting

“Prove File” from the GPS menus. The
result is a list of locations where unproved

verification conditions exist, if any.

The programmer can then view and edit
those locations as necessary.

Proofs fail for three reasons:

 The code is incorrect. The check

being analyzed might actually fail.

 The theorem prover(s) are not

powerful enough to complete the
proofs.

 There is insufficient information in

the program to complete the proofs.

Most of the skill in using the SPARK tools

is in determining which of these cases is the
problem, and in modifying the program to

deal with that situation.

It is important to understand that the GNAT

Ada compiler can insert runtime checks for
all the SPARK assertions as well as the Ada

language mandated checks. During testing it
would be typical to build the program with
these runtime checks enabled. Thus checks

that can't be completely proved can still be
tested. Once all checks are proved, the

runtime checking can be disabled, saving
both space and time in the final program
without compromising safety.

Language

The SPARK language is a subset of Ada in
that certain Ada features that are difficult to

analyze using current technology have been
removed from the language. Specifically

SPARK supports neither exception handling
nor access types (pointers). In SPARK it is
necessary to report errors using returned

status values. However, \SPARK's flow
analysis ensures that all

such values are checked. It is not possible to
ignore error codes in a SPARK program that
passes examination without warning.

 6

The lack of access types may seem more
limiting but Ada, in general, requires less

use of explicit indirection than is typical in
C programs. In Ada, and in \SPARK, arrays

are first class citizens of the language and
can be passed into and returned from
subprograms directly.

Also arrays can be dynamically sized on the

stack without the use of an explicit memory
allocator.

The SPARK language also extends Ada with
additional aspects that enrich declarations

and

additional assertions that describe conditions

that must hold true in every execution of the

program. The additional aspects include data
dependency and information dependency
declarations.

The additional assertions include pre- and

postconditions, loop invariants, subtype
predicates, and other related things.

As an example consider the following
specification of a SPARK package

containing a single global datebook object
along with subprograms for manipulating it:

with Dates;

use type Dates.Datetime;

package Datebook

 with

 SPARK_Mode => On,

 Abstract_State => State

is

 Maximum_Number_Of_Events :

constant := 64;

 subtype Event_Count_Type is

Natural range 0 ..

Maximum_Number_Of_Events;

 type Status_Type is (Success,

Description_Too_Long,

Insufficient_Space, No_Event);

 -- Initializes the datebook.

 procedure Initialize

 with

 Global => (Output => State),

 Depends => (State => null);

 -- Adds an event to the

datebook.

 procedure Add_Event

 (Description : in String;

 Date : in Dates.Datetime;

 Status : out Status_Type)

 with

 Global => (In_Out => State),

 Depends => (State =>+

(Description, Date), Status =>

(Description, State));

 -- Other subprograms as

required...

end Datebook;

The package is decorated with a
SPARK_Mode aspect set to On indicating that

this compilation unit is intended to abide by

the restrictions of the SPARK language. The
fact that the package contains internal global

state is declared explicitly using the
Abstract_State aspect. How that internal

state is manipulated by the subprograms is
also declared explicitly using the Global

 7

and Depends aspects. For example, the

Add_Event procedure both reads and writes

the global state. Specifically the new state
depends on itself (the meaning of the plus

sign in the =>+ notation) and on the
Description and Data parameters.

The SPARK tools use this information to

verify that all values are initialized before
use and that all computed results are used in

some way. For example, calling Add_Event

before calling Initialize is detected
because Add_Event reads the package state

and thus requires it to be initialized first.

Similarly since Status is an out parameter

of the procedure the SPARK tools will
verify that its value is used in some way;

ignoring status codes is not allowed.

The SPARK tools will further verify that the

dependency declarations are supported by
the implementation in the package body (not

shown here for the sake of brevity).

As another example consider the following

specification of a SPARK package
containing a search procedure:

package Searchers

 with SPARK_Mode => On

is

 subtype Index_Type is Positive

range 1 .. 100;

 type Array_Type is

array(Index_Type) of Integer;

 procedure Binary_Search

(Search_Item : in Integer;

 Items : in Array_Type;

 Found : out Boolean;

 Result

: out Index_Type)

 with

 Pre =>

 (for all J in

Items'Range =>

 (for all K in J + 1

.. Items'Last => Items(J) <=

Items(K))),

 Post =>

 (if Found then

Search_Item = Items(Result)

 else (for all

J in Items'Range => Search_Item /=

Items(J)));

end Searchers3;

Following normal Ada style, an array type is
defined that is indexed over a subrange of
the range of positive integers. The

Binary_Search procedure takes an item to

search for, an array to search, and outputs a
Boolean flag to indicate if the item is found

along with the item's location in the array if
it is.

The procedure declaration is enhanced with
additional semantic information in the form

of pre-and postconditions. The precondition
states that the input array is sorted. The
postcondition states that if the item is found

the returned index is, in fact, the location of
the item. On the other hand if the item is not

found, it does not exist in the array.

The body of this package showing the

implementation of the procedure is:

package body Searchers

 with SPARK_Mode => On

is

 procedure Binary_Search

(Search_Item : in Integer;

 8

 Items : in Array_Type;

 Found : out Boolean;

 Result : out Index_Type) is

Low_Index : Index_Type :=

Items'First;

 Mid_Index : Index_Type;

High_Index : Index_Type :=

Items'Last;

 begin

 Found := False;

 Result := Items'First;

-- Initialize Result to "not found"

case.

 -- If the item is out of

range, it is not found.

if Search_Item <

Items(Low_Index) or

Items(High_Index) <

Search_Item then

 return;

 end if;

 loop

 Mid_Index := (Low_Index +

High_Index) / 2;

 if Search_Item =

Items(Mid_Index) then

 Found := True;

 Result := Mid_Index;

 return;

 end if;

 exit when Low_Index =

High_Index;

 pragma Loop_Invariant (not

Found);

 pragma Loop_Invariant

(Mid_Index in Low_Index ..

High_Index - 1);

 pragma Loop_Invariant

(Items(Low_Index) <= Search_Item);

 pragma Loop_Invariant

(Search_Item <= Items(High_Index));

 pragma Loop_Variant

(Decreases => High_Index -

Low_Index);

 if Items(Mid_Index) <

Search_Item then

 if Search_Item <

Items(Mid_Index + 1) then

 return;

 end if;

 Low_Index := Mid_Index

+ 1;

 else

 High_Index :=

Mid_Index;

 end if;

 end loop;

 end Binary_Search;

end Searchers;

The SPARK tools will first generate
verification conditions at each place in the

body where an Ada check is required. For
example every place where the |Items| array

is accessed must be checked to ensure the
index used is in range. Using the
precondition as an initial hypotheses, and

adding information based on the actions
taken in the procedure, the SPARK tools

 9

will generate a verification condition to
show that the postcondition is always true.

Furthermore at every call site a verification
condition will be generated to show that the

precondition must be true at that call site.

In this example all of these verification

conditions are proved automatically showing
that the procedure is free of unexpected

runtime errors and that it always honors its
strong postcondition (given the
precondition).

The Loop_Invariant pragmas in the

procedure where written to assist the

proving process. They

represent conditions that must be true at that

point for every iteration of the enclosing
loop.

The SPARK tools prove that the invariants
are true on the first iteration and that they

remain true on all following iterations. The
tools can then use the conditions in the

invariants to complete following proofs,
such as the postcondition in this case.

The Loop_Variant pragma is used to prove

that the loop will eventually terminate. It
gives an expression that, in this case, always
decreases with each loop iteration. Because

the types involved are bounded and because
the SPARK tools have already proved that

overflow errors are impossible, even in the
assertion expressions themselves, it follows
that the loop must end since the value of a

bounded expression can't decrease forever.

Although this example can only search

arrays of 100 integers, it is possible,
although admittedly more difficult, to write

general purpose code that is similarly proved
free of errors. Overall these examples only

give a flavor of SPARK and many features
and details have been left out for the sake of

brevity.

WHERE SPARK WOULD

HAVE HELPED

Ariane 5 initial flight failure

The Ariane 5 software was reused from the
Ariane 4, written in Ada. The greater
horizontal acceleration in the larger Ariane 5

caused a data conversion from a 64-bit
floating point number to a 16-bit signed

integer value to overflow and cause a
hardware exception. “Efficiency”
considerations had omitted range checks for

this particular variable, although
conversions of other variables in the code

were protected. The exception halted the
gyro reference platforms, resulting in the
destruction of the flight. The financial loss

was over $500,000,000. SPARK/Ada would
have prevented this failure

Boeing 787 generator control computer

There are two generators for each of the two
engines, each with its own control computer

programmed in Ada. The computer keeps
count of power on time in centiseconds in a
32 bit register. Just after 8 months elapses,

the register overflows. Each computer goes
into “safe” mode shutting down its generator

resulting in a complete power failure,
causing loss of control of the aircraft. The
FAA Airworthiness Directive says to shut

off the power before 8 months as the
solution. SPARK/Ada would have

prevented this.

NEW WORK

CubedOS

CubedOS is an operating system intended

 10

for CubeSat flight control software. It will
be used by Vermont Technical College in

support of our Lunar IceCube work.
However, the intent is for CubedOS to be

general enough and modular enough for
other groups to profitably employ the
system. Since every mission uses different

hardware and has different software needs,
CubedOS is a really an application

framework into which custom modules can
be plugged to implement whatever mission
functionality is required. CubedOS provides

inter-module communication and other
common services required by many

missions. CubedOS thus serves both as a
kind of operating system and as a library of
useful tools.

CubedOS is written in SPARK with critical

sections verified to be free of the possibility
of runtime error. SPARK has also been used
to provide some other correctness

guarantees in certain cases. It is our
intention that all CubedOS modules also be

written in SPARK and proved free of
runtime error (at least). However, CubedOS
also allows modules, or parts of modules, to

be written in full Ada or even C if
appropriate. This allows CubedOS to take

advantage of third party C libraries or to
integrate with an existing C code base.

CubedOS can run directly on top of the
hardware, with the assistance of a suitable

Ada runtime system. It can also run as an
ordinary process on top of a conventional
operating system such as Linux, or on top of

an embedded operating system such as
VxWorks. This is made possible by the

CubedOS low-level abstraction layer
(LLAL). This layer plays a role in CubedOS
similar to that played by the hardware

abstraction layer used by many conventional
operating systems. To port a CubedOS

application to a new platform or underlying
operating system, one should only need to

provide a suitable LLAL.

The architecture of CubedOS is a collection
of active and passive modules, where each

active module contains one, and sometimes
multiple, threads or tasks. Although
CubedOS is written in SPARK/Ada there

need not be a one-to-one correspondence
between CubedOS modules and Ada

packages. In fact, modules are routinely
written as a collection of Ada packages in a
package hierarchy, allowing complex

modules to be implemented with the help of
internal private child packages.

Critical to the plug-and-play nature of
CubedOS, each active module is self-

contained and does not make direct use of
any code in any other active module

(although passive modules serving as library
components can be used). All inter-module
communication is done through the

CubedOS infrastructure with no direct
sharing of data or executable content. In this

respect CubedOS modules are similar to
processes in a more conventional operating
system. One consequence of this policy is

that a library that several modules want to
use must be either duplicated in each

module or provided as an independent
(passive) module of its own.

In the language of operating systems,
CubedOS can be said to have a microkernel

architecture where task management is
provided by the Ada runtime system. Both
low level facilities, such as device drivers,

and high level facilities, such as
communication protocol handlers or

navigation algorithms, are all implemented
as CubedOS modules. All modules are
treated equally by CubedOS.

In addition to inter-module communication,

CubedOS provides several general purpose
facilities. In some cases only the interface to

 11

the facility is described and different
implementations are possible (even

encouraged). Having a standard interface
allows other components of CubedOS to be

programmed against that interface without
concern about the underlying
implementation.

An asynchronous message passing system

with mailboxes is used. This, together with
the underlying Ada runtime system
constitutes the "kernel" of CubedOS.

A runtime library of useful packages, all
verified with SPARK:

A real time clock module.
A file system interface.
A radio communications interface.

Modules providing support for CCSDS
protocols.

A CubedOS system also requires drivers for
the various hardware components in the
system. Although the specific drivers

required will vary from mission to mission,
CubedOS does provide a general driver

model that allows components to
communicate with drivers fairly generically.
In a typical system there will be low level

drivers for accessing hardware busses as
well as higher level drivers for

sending/receiving commands from
components such as the radio, the power
system, the camera, etc. The low level

drivers constitute the CubedOS LLAL.

CubedOS provides several advantages over
"home grown" frameworks.

The message passing architecture is highly
concurrent and allows many overlapping

activities to be programmed in a natural
way. For example, our implementation of
the CCSDS File Delivery Protocol (CFDP)

takes advantage of this.
The architecture provides a lot of runtime

flexibility; programs can adapt their
communication patterns at runtime.

The architecture is consistent with the
restrictions of Ada's Ravenscar profile.

CubedOS also brings several disadvantages
over more customized solutions.

Because CubedOS messages are just octet
sequences, there is runtime overhead

associated with encoding and decoding
them.

CubedOS sacrifices some static type safety;
decoded messages must be validated at
runtime with type errors being handled

during the validation process. This is
particularly worrisome in light of

CubedOS's goal of providing robust
assurances of correctness.
It is unclear at this time how analyzable

CubedOS will be with the SPARK tools. We
await access to SPARK 2014 tools that can

process tasking constructs, which should be
available in October, 2015.
CubedOS is an ongoing effort and should be

considered experimental at this time.
However, we hope to refine the architecture

and implement enough non-trivial services
to make CubedOS useful to other groups.
Our long term goal is to distribute CubedOS

to others working on CubeSat software or,
for that matter, other similar embedded

systems.

GEONS translation

We previously started a translation of NASA

Goddard Space Flight Canter’s GPS
Enhanced Onboard Navigation System
(GEONS) from its original C language to

SPARK/Ada. We completed about 25% and
found several errors using the SPARK tools,

which we reported to Goddard. This project
is on hold as we work on the Lunar IceCube
software.

LUNAR ICECUBE

Collaborators

 12

Lunar IceCube is a 6U (10cm x 20cm x

30cm, 14kg) satellite. It is manifested on
the maiden flight of the NASA Space

Launch System (SLS), Exploration Mission
 1 (EM-1) in 2018.

Artists concept of the SLS Launch.

Morehead State University (Kentucky) is the
principal investigator (PI) for Lunar IceCube
under the Direction of Dr. Benjamin

Malphrus. The science PI is Dr. Pamela
Clark of Catholic University and NASA’s

Jet Propulsion Lab. The science instrument
and navigation plan is from NASA Goddard
Space Flight Center. The data/navigation

radio is from the Jet Propulsion Lab.

Lunar IceCube Spacecraft description

Lunar IceCube, ion drive at bottom

Iodine ion drive

Lunar IceCube will use a Busek BIT-3 ion
drive using solid iodine as the propellant.

Busek BIT-3 in operation.

This drive has a 3cm output grid, a 1.2 mN

thrust and is mounted on gimbals for
steering.

Computer

The main computer is a Space Micro Proton
400K. It uses a Freescale 2020 high

performance processor, 1 Ghz, 32-bit (per
core) dual core processor with 36-bit
physical addressing. It is radiation hardened

for operation beyond low Earth orbit.

Proton 400K CPU board

BIRCHES

The Broadband InfraRed Compact High
Resolution Exploration Spectrometer from

Goddard will be used to map water and
other volatiles on the surface of the Moon.

Iris 2

 13

Iris 2 X-band radio.

Iris Version 2 is a CubeSat/SmallSat

compatible transponder developed by
the National Aeronautics and Space
Administration’s (NASA’s) Jet Propulsion

Laboratory (JPL) as a low volume and mass,
lower power and cost, software/

firmware defined telecommunications
subsystem for deep space. Iris V2’s features
include 0.5 U volume, 1.1 kg mass, 26 W

DC power consumption when fully
transponding at 5 W radio frequency output

(8 W DC input for receive only), and
interoperability with NASA’s Deep Space
Network (DSN supporting CCSDS

standards and SLE data packet protocol. (the
CCSDS file transfer protocol was the first

SPARK/Ada software written for Lunar
IceCube by our students) at X-Band
frequencies (7.2 GHz uplink, 8.4 GHz

downlink) for command, telemetry, and
navigation.

The radio supports a wide range of data rates
needed for wide range of distances, and has
full duplex capabilities appropriate for

Doppler and ranging. Iris 2 utilizes a Gaisler
LEON3-FT softcore (on Virtex 6). The

system produces 37 dBm transmit power
with-130 dBm receive sensitivity.

ADACS

XACT star tracker/momentum wheels

We are using a Blue Canyon Technologies
XB-1 system, consisting of two XACT
Micro Star Tracker and Micro Reaction

Wheel assemblies. XACT features 3-axis
Stellar Attitude Determination in a micro-

package. Multiple reference frames:
Inertial, LVLH, Earth-Fixed, and Solar.
Precise 3-axis control is provided by low

jitter reaction wheels, torque rods and
integrated control algorithms.

PV panels

Power will be supplied with a 120W (in two
panels) MMA E-HaWK™ Deployable Solar

Panel Array, both of which are aimed with
Honeybee Robotics solar array drives.

MISSION

Transfer to Lunar orbit

Launch using EM-1: Lunar IceCube will be
injected into a direct transfer as a payload

onboard EM-1. Our mission profile uses the
Interim Cyrogenic Propulsion Stage (ICPS)
disposal state that occurs at approximately

1-hr after the EM-1 injection as our initial
condition.

This state, if unchanged, would result in a
lunar gravity assist at an approximate lunar

 14

altitude of 1300-km and enter into a
heliocentric drift-away orbit. We will use

the described low-thrust propulsion system
to modify the trajectory derived from the

supplied state in order to change the first
lunar flyby to different B-Plane components
with a radial distance of 9239 km,

permitting a post lunar flyby design that
incorporates dynamical systems (manifolds)

and minimizing the total required delta-v.

Collecting data

Data will be collected from the BIRCHES

instrument and stored, as during operation,
the BIRCHES end of the spacecraft must
point to the Lunar zenith.

Data download

After a data collection pass, the spacecraft
will be rotated by the ADACS so that the

patch antennas will point toward the Earth
for communication with the DSN.

Lunar IceCube software

As can be seen from the great complexity of
the spacecraft systems and operations, the

software for Lunar IceCube will be very
substantially more complex than our current
CubeSat software. We have proven the

utility of the high integrity software
technology of SPARK/Ada in that of the 12

university CubeSats we were launched with,
we are the only one operational. We are
looking at several software design tools to

help with the overall design, such as UML
and Simulink based. Our current Cubesat

software was created in a rather ad hoc
fashion, but the complexity of Lunar
IceCube will require a much more structured

approach.

End - Moon or Mars?

At the end of the data collection period of
about six months, the spacecraft cannot be

left in Lunar orbit. With no atmosphere, it
would remain there indefinitely. We have

permission to dispose of it by using the ion
drive to deorbit and crash into the Moon.
Another option, if volume considerations

allow the full initial design quantity of
iodine (a 350cc tank, holding 1.75kg of

iodine), we would have enough delta-v,
2,800 ms-1, when only about 850 ms-1 is
needed for the Lunar mission) capability to

leave Lunar orbit and head to Mars. The
final experiment would be to see how long

we could remain in radio contact with Lunar
IceCube.

References

1 Building High Integrity Applications with
SPARK
by John W. McCormick & Peter C. Chapin

Cambridge University Press
ISBN-10: 1107656842

ISBN-13: 978-1107656840

2 ALT-ERGO: http://alt-ergo.lri.fr

3 CVC4: http://cvc4.cs.nyu.edu/web/

4 Microsoft Z3:
https://github.com/Z3Prover/z3

Further SPARK information:

http://libre.adacore.com/tools/spark-gpl-
edition/

http://www.spark-2014.org

http://alt-ergo.lri.fr/
http://cvc4.cs.nyu.edu/web/
https://github.com/Z3Prover/z3
http://libre.adacore.com/tools/spark-gpl-edition/
http://libre.adacore.com/tools/spark-gpl-edition/
http://www.spark-2014.org/

