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ABSTRACT 

 
We currently have an operating single CubeSat launched as part of NASA's ELaNa IV program 

on November 19, 2013, the first satellite of any kind launched by a college in New  England. 
Many CubeSat failures have been attributed to software failures. Of the twelve university 
CubeSats that were launched with ours, we are the only one that is functional.  Two had partial 

contact for a week, one lasted four months, and eight were never heard from. These other 
CubeSats primarily used the C language. We are using the most reliable software technology 

ever sent into space. We used the SPARK 2005 Toolset and Ada language in the construction of 
our software. Ada is used in almost all European Space Agency and many NASA rockets and 
spacecraft, and in most European rail systems and nuclear power plants. SPARK is used in 

commercial aviation (Rolls-Royce Trent jet engines, ARINC ACAMS system, Lockheed Martin 
C130J), military aviation (EuroFighter Typhoon, Harrier GR9, AerMacchi M346), air-traffic 

management (UK NATS iFACTS system), rail (numerous signaling applications), and medical 
(LifeFlow ventricular assist device) applications. 
 

  We are using SPARK/Ada, with its reduction of errors by a factor of about 100 compared with 
C.  SPARK is a formally defined programming language and a set of verification tools 

specifically designed to support the development of high integrity software, and can formally 
verify information flow, freedom from runtime errors, functional correctness, and security and 
safety policies. 

 
  Ours is the first spacecraft to use SPARK. We are currently upgrading our CubeSat software to 

SPARK 2014, and will then work on improving some of the algorithms in that software. We 
would then have a very reliable software platform, CubedOS that other projects could use as a  
base for their CubeSat or other spacecraft projects. Our next CubeSat, Lunar IceCube with 

Morehead State University (PI), Goddard Space Flight Center (BIRCHES & Lunar transfer 
trajectory) and the Jet Propulsion Lab (Iris 2) is self propelled with a Busek iodine ion drive 

which will go to the Moon on the Space Launch System EM-1 flight in 2018. This software will 
be much more complex, dealing with power management, the ADACS, infrared spectrometer 
(BIRCHES), the data and navigation radio (Iris 2), the electrical power system, and aim the 

photo voltaic panels and ion thruster. The software will carry out the navigation plan and deal 
with ground based commands and upgrades. SPARK's reliability will be necessary for this. 

 

mailto:carl.brandon@vtc.edu
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        VERMONT LUNAR 

CUBESAT DESCRIPTION 

 

Hardware 

 

The Vermont Lunar CubeSat is a 1U (10cm 
x 10cm x 10cm with 0.7cm and 0.65cm legs 

on the ends, maximum mass of 1.33kg) 
CubeSat.  Our mass is 1.01kg.  It uses the 
aluminum structure and CPU board, using 

the Texas Instrument MSP430 processor, 
from CubeSat Kit.  We used a commercial 

electrical power system (EPS) from Clyde 
Space in Glasgow, Scotland.  This supplied 
regulated 3.3V and 5V and raw 8.4V from 

the 10Wh battery.  It also had three charge 
controllers for the six photovoltaic panels on 

the sides of the Cubesat.  A deployable 
crossed yagi antenna system from ISIS in 
Delft, Netherlands, for the 70cm and 2m 

bands, used by our radio, a Helium-100 
from Astrodev with a 2m receiver for uplink 

and a 70cm transmitter for downlink.  Our 
GPS receiver from Novatel was mounted on 
an interface board from Astrodev (designed 

at the University of Michigan).  We made a 
board with connectors for the LEDs and 

mounting for a GPS antenna with a 33dB 
LNA and a VGA camera with built in JPEG 
compression.  The outer surface of the 

satellite had six boards with 29% efficient 
photovoltaic cells, four panels with two each 

and two panels with one each.  All of the 
panels also had two high power green LEDs 
each. 

 
 

 
 
 

 
 

 
 

Vermont Lunar CubeSat before launch. 

 
 
Software 

 
Our software for the Vermont Lunar 

CubeSat is written primarily in SPARK1 
2005 (discussed below).  Some of the 
software metrics are: 

5991 lines of code. 
4095 lines of comments (2843 are SPARK 

annotations). 
A total of 10,086 lines (not including blank 
lines). 

The Examiner generated 4542 verification 
conditions, all but 102 were proved 

automatically (98%). 
We attempted to prove the program free of 
runtime errors, which allowed us to suppress 

all checks. 
The C portion consisted of 2239 lines 

(including blank lines). 
Additional provers in SPARK 20141 would 
allow 100% automatic proofs. 

 
Mission 

 
Our CubeSat was designed primarily as a 
technology demonstrator for navigation 

components for a hoped for future Lunar 
mission.  As described below, we are now 

working on that mission.  Other important 
aspects were to gain experience in all 
aspects of satellite construction, launch and 

operation.  In addition, we wanted to show 
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the superior reliability of the SPARK/Ada 
software technology.  We applied for and 

were accepted in the first group of the 
NASA Educational Launch of Nano-

Satellites (ELaNa), and became part of the 
ELaNa IV launch.  This was a flight 
arranged by NASA on an Air Force 

Minotaur 1, the ORS-3 launch, to a 500km 
altitude, 40.5 degree inclination circular 

orbit.  The launch occurred on November 
19, 2013, from Wallops Island, Virginia.  
On this launch were 14 Air Force CubeSats, 

2 NASA CubeSats and 12 university 
CubeSats in addition to an Air Force TAC-3 

larger satellite.  
 

Our ORS-3 launch from Wallops Island. 

 
ELaNa IV results 

 
The Air Force satellites appear to be mostly 
successful, but due to the classified nature of 

some, we don’t have the details.  Both of the 
NASA CubeSats were successful. 
 

The university CubeSats were another story.  
Eight of the twelve were never heard from.  

One fried their batteries on the first day due 

to a couple of software errors.  One had 
partial contact for less than a week.  One 

worked successfully for four months.  Ours 
is still fully operational at 22 months, having 

travelled 10,000 orbits and 266 million 
miles (428 million kilometers).  All of the 
other university CubeSats had software 

primarily written in C. 
 

In addition to inertial measurement data, we 
can also command our CubeSat to take 
photos and GPS data.  Our first photo of 

Australia in 2014, and a recent photo from 
June 2015 are below. 

 
 
 

North coast of Western Australia 

 

Clouds over the ocean 
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PAST ADA AND SPARK USAGE 

 

Arctic Sea Ice Buoy 

 

Our first project using SPARK/Ada was a 
sub-contract to build a prototype Arctic Sea 
Ice Buoy with GPS, temperature and wind 

speed and direction sensors.  It used the 
same CubeSat Kit CPU board that was later 

used in the Vermont Lunar CubeSat.  This 
was much simpler software then was later 
used in our CubeSat. It allowed us to gain 

experience with SPARK/Ada, and develop 
the software tool chain that we later used in 

our CubeSat.  There was no Ada compiler 
for the MSP430, so we wrote the software in 
SPARK/Ada, then ran it through AdaMagic 

(the front end of an Ada compiler which 
uses ANSI standard C as the intermediate 

language).  The C was then compiled with a 
C compiler.  This resulted in the C software 
being proved correct, as it was translated 

from the SPARK/Ada source code.  
 

SPARK DESCRIPTIONS AND 

CHARACTERISTICS 

 

Toolset 

 

The current version of the SPARK toolset 
and language definition is SPARK 2014. It 
is a major enhancement over the earlier 

SPARK 2005 toolset and language 
definition we briefly described in Section 

Vermont Lunar CubeSat – Software above. 
The SPARK 2014 language supports a much 
larger subset of Ada, allowing more natural 

designs. The SPARK 2014 toolset uses more 
modern theorem provers, and is more easily 

extensible to use additional provers as they 
become available. The net effect of these 
enhancements is that SPARK 2014 is much 

easier to use, allowing the developer to 
focus more on the problem being solved and 

less on working around the idiosyncrasies of 
the programming environment. 

 
In this section we give an overview of the 

SPARK 2014 toolset and language so the 
reader can better understand the nature of 

SPARK programming and the advantages it 
offers. For a more complete description of 
SPARK 2014 see, for example, McCormick-

Chapin-20151. 
 

All current and future software development 
done by the CubeSat Laboratory at Vermont 
Technical College, including the work 

described in Section New Work below, is 
being done using SPARK 2014. Unless 

otherwise stated all following uses of 
SPARK in this paper refer to SPARK 2014. 
 

SPARK 2014 - Toolset 

 

The SPARK tools consist of a modified Ada 
compiler together with a verification 
condition generator and one or more back-

end theorem provers. 
 

Adacore's GNAT Ada compiler has been 
modified to understand the additional 
SPARK aspects, described in the next 

section, and to verify, upon request, 
conformance to the restrictions of the 

SPARK language. Certain diagnostic 
messages produced by “the SPARK tools” 
are actually produced by the modified Ada 

compiler before the specialized tools are 
run. These are typically messages related to 

the structure of the program (i.e., syntax 
errors in the SPARK specific constructs). 
 

An additional tool, GNATprove, performs 
detailed data and information flow analysis, 

described in the next section, and generates 
verification conditions for the provers. 
Conceptually GNATprove produces a 

verification condition, or “check,” for every 
place where the Ada language mandates a 

runtime check. If these verification 
conditions are proved, or “discharged,” it 
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means the runtime check will never fail. 
Examples of such runtime checks include: 

out of bounds array access, arithmetic 
overflow, division by zero, and some other 

things. 
 
In addition the Ada language allows the 

programmer to express range constraints on 
values to ensure the results of computations 

are always in an appropriate range (e.g., 
never negative, always in the range 1 to 100, 
etc.) Ada normally includes runtime checks 

to verify these constraints; GNATprove 
generates verification conditions that, if 

discharged, will statically show they never 
fail. 
 

Furthermore Ada 2012 allows the 
programmer to include pre- and 

postconditions on subprograms, as well as 
other assertions, that encode higher level 
correctness properties (e.g., a sort procedure 

produces a sorted permutation of its input). 
Again, GNATprove generates verification 

conditions that, if discharged, will statically 
show those properties will always hold. 
 

At the time of this writing the SPARK tools 
ship with two back-end theorem provers, 

Alt-Ergo2 and CVC43. Two provers are used 
to take advantage of their complementary 
strengths; verification conditions unprovable 

by one prover might be handled by the 
other. It is possible to configure the SPARK 

tools to use only one prover or additional 
provers obtained separately, such as 
Microsoft's Z34. 

 
The GPS integrated development 

environment developed by Adacore provides 
a convenient front-end to the SPARK tools. 
Using the tools can be as easy as selecting 

“Prove File” from the GPS menus. The 
result is a list of locations where unproved 

verification conditions exist, if any. 
 

The programmer can then view and edit 
those locations as necessary. 

 
Proofs fail for three reasons: 

 

 The code is incorrect. The check 

being analyzed might actually fail. 
 

 The theorem prover(s) are not 

powerful enough to complete the 
proofs. 

 

 There is insufficient information in 

the program to complete the proofs. 
 
Most of the skill in using the SPARK tools 

is in determining which of these cases is the 
problem, and in modifying the program to 

deal with that situation. 
 
It is important to understand that the GNAT 

Ada compiler can insert runtime checks for 
all the SPARK assertions as well as the Ada 

language mandated checks. During testing it 
would be typical to build the program with 
these runtime checks enabled. Thus checks 

that can't be completely proved can still be 
tested. Once all checks are proved, the 

runtime checking can be disabled, saving 
both space and time in the final program 
without compromising safety. 

 
Language 

 

The SPARK language is a subset of Ada in 
that certain Ada features that are difficult to 

analyze using current technology have been 
removed from the language. Specifically 

SPARK supports neither exception handling 
nor access types (pointers). In SPARK it is 
necessary to report errors using returned 

status values. However, \SPARK's flow 
analysis ensures that all 

such values are checked. It is not possible to 
ignore error codes in a SPARK program that 
passes examination without warning. 
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The lack of access types may seem more 
limiting but Ada, in general, requires less 

use of explicit indirection than is typical in 
C programs. In Ada, and in \SPARK, arrays 

are first class citizens of the language and 
can be passed into and returned from 
subprograms directly. 

 
Also arrays can be dynamically sized on the 

stack without the use of an explicit memory 
allocator. 
 

The SPARK language also extends Ada with 
additional aspects that enrich declarations 

and 
 
additional assertions that describe conditions 

that must hold true in every execution of the 
 

program. The additional aspects include data 
dependency and information dependency 
declarations. 

 
The additional assertions include pre- and 

postconditions, loop invariants, subtype 
predicates, and other related things. 
 

As an example consider the following 
specification of a SPARK package 

containing a single global datebook object 
along with subprograms for manipulating it: 
 
with Dates; 

 

use type Dates.Datetime; 

 

package Datebook 

 

  with 

 

    SPARK_Mode => On, 

 

    Abstract_State => State 

 

is 

 

   Maximum_Number_Of_Events : 

constant := 64; 

 

   subtype Event_Count_Type is 

Natural range 0 .. 

Maximum_Number_Of_Events; 

 

 

 

   type Status_Type is (Success, 

Description_Too_Long, 

Insufficient_Space, No_Event); 

 

 

 

   -- Initializes the datebook. 

 

   procedure Initialize 

 

   with 

 

     Global => (Output => State), 

 

     Depends => (State => null); 

 

   -- Adds an event to the 

datebook. 

 

   procedure Add_Event 

 

     (Description : in  String; 

 

      Date : in  Dates.Datetime; 

 

      Status : out Status_Type) 

 

   with 

 

     Global => (In_Out => State), 

 

     Depends => (State =>+ 

(Description, Date), Status => 

(Description, State)); 

 

   -- Other subprograms as 

required... 

 

end Datebook; 

 
The package is decorated with a 
SPARK_Mode aspect set to On indicating that 

this compilation unit is intended to abide by 

the restrictions of the SPARK language. The 
fact that the package contains internal global 

state is declared explicitly using the 
Abstract_State aspect. How that internal 

state is manipulated by the subprograms is 
also declared explicitly using the Global 
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and Depends aspects. For example, the 

Add_Event procedure both reads and writes 

the global state. Specifically the new state 
depends on itself (the meaning of the plus 

sign in the =>+ notation) and on the 
Description and Data parameters. 

 
The SPARK tools use this information to 

verify that all values are initialized before 
use and that all computed results are used in 

some way. For example, calling Add_Event 

before calling Initialize is detected 
because Add_Event reads the package state 

and thus requires it to be initialized first. 

Similarly since Status is an out parameter 

of the procedure the SPARK tools will 
verify that its value is used in some way; 

ignoring status codes is not allowed. 
 
The SPARK tools will further verify that the 

dependency declarations are supported by 
the implementation in the package body (not 

shown here for the sake of brevity). 
 
As another example consider the following 

specification of a SPARK package 
containing a search procedure: 

 
package Searchers 

 

  with SPARK_Mode => On 

 

is 

 

   subtype Index_Type is Positive 

range 1 .. 100; 

 

   type Array_Type is 

array(Index_Type) of Integer; 

 

   procedure Binary_Search 

(Search_Item : in  Integer; 

 

     Items : in  Array_Type; 

 

     Found : out Boolean; 

 

                            Result      

: out Index_Type) 

 

      with 

 

         Pre => 

 

            (for all J in 

Items'Range => 

 

               (for all K in J + 1 

.. Items'Last => Items(J) <= 

Items(K))), 

 

         Post => 

 

           (if Found then 

Search_Item = Items(Result) 

 

                     else (for all 

J in Items'Range => Search_Item /= 

Items(J))); 

 

end Searchers3; 

 

Following normal Ada style, an array type is 
defined that is indexed over a subrange of 
the range of positive integers. The 

Binary_Search procedure takes an item to 

search for, an array to search, and outputs a 
Boolean flag to indicate if the item is found 

along with the item's location in the array if 
it is. 
 

The procedure declaration is enhanced with 
additional semantic information in the form 

of pre-and postconditions. The precondition 
states that the input array is sorted. The 
postcondition states that if the item is found 

the returned index is, in fact, the location of 
the item. On the other hand if the item is not 

found, it does not exist in the array. 
 
The body of this package showing the 

implementation of the procedure is: 
 
package body Searchers 

 

  with SPARK_Mode => On 

 

is 

 

   procedure Binary_Search 

(Search_Item : in  Integer; 
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   Items  : in  Array_Type; 

 

   Found  : out Boolean; 

 

   Result : out Index_Type) is 

 

Low_Index : Index_Type :=                       

Items'First; 

 

      Mid_Index  : Index_Type; 

 

High_Index : Index_Type :=  

Items'Last; 

 

   begin 

 

      Found  := False; 

 

      Result := Items'First;  

-- Initialize Result to "not found" 

case. 

 

      -- If the item is out of 

range, it is not found. 

 

if Search_Item <    

Items(Low_Index) or 

Items(High_Index) < 

Search_Item then 

 

         return; 

 

      end if; 

 

      loop 

 

         Mid_Index := (Low_Index + 

High_Index) / 2; 

 

         if Search_Item = 

Items(Mid_Index) then 

 

            Found  := True; 

 

            Result := Mid_Index; 

 

            return; 

 

         end if; 

 

 

 

         exit when Low_Index = 

High_Index; 

 

 

         pragma Loop_Invariant (not 

Found); 

 

         pragma Loop_Invariant 

(Mid_Index in Low_Index .. 

High_Index - 1); 

 

         pragma Loop_Invariant 

(Items(Low_Index) <= Search_Item); 

 

         pragma Loop_Invariant 

(Search_Item <= Items(High_Index)); 

 

         pragma Loop_Variant 

(Decreases => High_Index - 

Low_Index); 

 

 

         if Items(Mid_Index) < 

Search_Item then 

 

            if Search_Item < 

Items(Mid_Index + 1) then 

 

               return; 

 

            end if; 

 

            Low_Index := Mid_Index 

+ 1; 

 

         else 

 

            High_Index := 

Mid_Index; 

 

         end if; 

 

 

      end loop; 

 

   end Binary_Search; 

 

 

end Searchers; 

 
The SPARK tools will first generate 
verification conditions at each place in the 

body where an Ada check is required. For 
example every place where the |Items| array 

is accessed must be checked to ensure the 
index used is in range. Using the 
precondition as an initial hypotheses, and 

adding information based on the actions 
taken in the procedure, the SPARK tools 
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will generate a verification condition to 
show that the postcondition is always true. 

Furthermore at every call site a verification 
condition will be generated to show that the 

precondition must be true at that call site. 
 
In this example all of these verification 

conditions are proved automatically showing 
that the procedure is free of unexpected 

runtime errors and that it always honors its 
strong postcondition (given the 
precondition). 

 
The Loop_Invariant pragmas in the 

procedure where written to assist the 

proving process. They 
 
represent conditions that must be true at that 

point for every iteration of the enclosing 
loop. 

 
The SPARK tools prove that the invariants 
are true on the first iteration and that they 

remain true on all following iterations. The 
tools can then use the conditions in the 

invariants to complete following proofs, 
such as the postcondition in this case. 
 

The Loop_Variant pragma is used to prove 

that the loop will eventually terminate. It 
gives an expression that, in this case, always 
decreases with each loop iteration. Because 

the types involved are bounded and because 
the SPARK tools have already proved that 

overflow errors are impossible, even in the 
assertion expressions themselves, it follows 
that the loop must end since the value of a 

bounded expression can't decrease forever. 
 

 
 
Although this example can only search 

arrays of 100 integers, it is possible, 
although admittedly more difficult, to write 

general purpose code that is similarly proved 
free of errors. Overall these examples only 

give a flavor of SPARK and many features 
and details have been left out for the sake of 

brevity. 
 

WHERE SPARK WOULD 

HAVE HELPED 

 

Ariane 5 initial flight failure 

 

The Ariane 5 software was reused from the 
Ariane 4, written in Ada.  The greater 
horizontal acceleration in the larger Ariane 5 

caused a data conversion from a 64-bit 
floating point number to a 16-bit signed 

integer value to overflow and cause a 
hardware exception.  “Efficiency” 
considerations had omitted range checks for 

this particular variable, although 
conversions of other variables in the code 

were protected.  The exception halted the 
gyro reference platforms, resulting in the 
destruction of the flight.  The financial loss 

was over $500,000,000.  SPARK/Ada would 
have prevented this failure 

 
Boeing 787 generator control computer 

 

There are two generators for each of the two 
engines, each with its own control computer 

programmed in Ada.  The computer keeps 
count of power on time in centiseconds in a 
32 bit register.  Just after 8 months elapses, 

the register overflows.  Each computer goes 
into “safe” mode shutting down its generator 

resulting in a complete power failure, 
causing loss of control of the aircraft.  The 
FAA Airworthiness Directive says to shut 

off the power before 8 months as the 
solution.  SPARK/Ada would have 

prevented this. 
 

NEW WORK 

 

CubedOS 

 
CubedOS is an operating system intended 
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for CubeSat flight control software. It will 
be used by Vermont Technical College in 

support of our Lunar IceCube work. 
However, the intent is for CubedOS to be 

general enough and modular enough for 
other groups to profitably employ the 
system. Since every mission uses different 

hardware and has different software needs, 
CubedOS is a really an application 

framework into which custom modules can 
be plugged to implement whatever mission 
functionality is required. CubedOS provides 

inter-module communication and other 
common services required by many 

missions. CubedOS thus serves both as a 
kind of operating system and as a library of 
useful tools. 

 
CubedOS is written in SPARK with critical 

sections verified to be free of the possibility 
of runtime error. SPARK has also been used 
to provide some other correctness 

guarantees in certain cases. It is our 
intention that all CubedOS modules also be 

written in SPARK and proved free of 
runtime error (at least). However, CubedOS 
also allows modules, or parts of modules, to 

be written in full Ada or even C if 
appropriate. This allows CubedOS to take 

advantage of third party C libraries or to 
integrate with an existing C code base. 
 

CubedOS can run directly on top of the 
hardware, with the assistance of a suitable 

Ada runtime system. It can also run as an 
ordinary process on top of a conventional 
operating system such as Linux, or on top of 

an embedded operating system such as 
VxWorks. This is made possible by the 

CubedOS low-level abstraction layer 
(LLAL). This layer plays a role in CubedOS 
similar to that played by the hardware 

abstraction layer used by many conventional 
operating systems. To port a CubedOS 

application to a new platform or underlying 
operating system, one should only need to 

provide a suitable LLAL. 
 

The architecture of CubedOS is a collection 
of active and passive modules, where each 

active module contains one, and sometimes 
multiple, threads or tasks. Although 
CubedOS is written in SPARK/Ada there 

need not be a one-to-one correspondence 
between CubedOS modules and Ada 

packages. In fact, modules are routinely 
written as a collection of Ada packages in a 
package hierarchy, allowing complex 

modules to be implemented with the help of 
internal private child packages. 

 
Critical to the plug-and-play nature of 
CubedOS, each active module is self-

contained and does not make direct use of 
any code in any other active module 

(although passive modules serving as library 
components can be used). All inter-module 
communication is done through the 

CubedOS infrastructure with no direct 
sharing of data or executable content. In this 

respect CubedOS modules are similar to 
processes in a more conventional operating 
system. One consequence of this policy is 

that a library that several modules want to 
use must be either duplicated in each 

module or provided as an independent 
(passive) module of its own. 
 

In the language of operating systems, 
CubedOS can be said to have a microkernel 

architecture where task management is 
provided by the Ada runtime system. Both 
low level facilities, such as device drivers, 

and high level facilities, such as 
communication protocol handlers or 

navigation algorithms, are all implemented 
as CubedOS modules. All modules are 
treated equally by CubedOS. 

 
In addition to inter-module communication, 

CubedOS provides several general purpose 
facilities. In some cases only the interface to 
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the facility is described and different 
implementations are possible (even 

encouraged). Having a standard interface 
allows other components of CubedOS to be 

programmed against that interface without 
concern about the underlying 
implementation. 

 
An asynchronous message passing system 

with mailboxes is used. This, together with 
the underlying Ada runtime system 
constitutes the "kernel" of CubedOS. 

A runtime library of useful packages, all 
verified with SPARK: 

A real time clock module. 
A file system interface. 
A radio communications interface. 

Modules providing support for CCSDS 
protocols. 

A CubedOS system also requires drivers for 
the various hardware components in the 
system. Although the specific drivers 

required will vary from mission to mission, 
CubedOS does provide a general driver 

model that allows components to 
communicate with drivers fairly generically. 
In a typical system there will be low level 

drivers for accessing hardware busses as 
well as higher level drivers for 

sending/receiving commands from 
components such as the radio, the power 
system, the camera, etc. The low level 

drivers constitute the CubedOS LLAL. 
 

CubedOS provides several advantages over 
"home grown" frameworks. 
 

The message passing architecture is highly 
concurrent and allows many overlapping 

activities to be programmed in a natural 
way. For example, our implementation of 
the CCSDS File Delivery Protocol (CFDP) 

takes advantage of this. 
The architecture provides a lot of runtime 

flexibility; programs can adapt their 
communication patterns at runtime. 

The architecture is consistent with the 
restrictions of Ada's Ravenscar profile. 

CubedOS also brings several disadvantages 
over more customized solutions. 

 
Because CubedOS messages are just octet 
sequences, there is runtime overhead 

associated with encoding and decoding 
them. 

CubedOS sacrifices some static type safety; 
decoded messages must be validated at 
runtime with type errors being handled 

during the validation process. This is 
particularly worrisome in light of 

CubedOS's goal of providing robust 
assurances of correctness. 
It is unclear at this time how analyzable 

CubedOS will be with the SPARK tools. We 
await access to SPARK 2014 tools that can 

process tasking constructs, which should be 
available in October, 2015. 
CubedOS is an ongoing effort and should be 

considered experimental at this time. 
However, we hope to refine the architecture 

and implement enough non-trivial services 
to make CubedOS useful to other groups. 
Our long term goal is to distribute CubedOS 

to others working on CubeSat software or, 
for that matter, other similar embedded 

systems. 
 
GEONS translation 

 
We previously started a translation of NASA 

Goddard Space Flight Canter’s GPS 
Enhanced Onboard Navigation System 
(GEONS) from its original C language to 

SPARK/Ada.  We completed about 25% and 
found several errors using the SPARK tools, 

which we reported to Goddard.  This project 
is on hold as we work on the Lunar IceCube 
software. 

 
LUNAR ICECUBE 

 

Collaborators 
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Lunar IceCube is a 6U (10cm x 20cm x 

30cm, 14kg) satellite.  It is manifested  on 
the maiden flight of the NASA Space 

Launch System (SLS), Exploration Mission 
 1 (EM-1) in 2018. 

Artists concept of the SLS Launch. 

 

Morehead State University (Kentucky) is the 
principal investigator (PI) for Lunar IceCube 
under the Direction of Dr. Benjamin 

Malphrus.  The science PI is Dr. Pamela 
Clark of Catholic University and NASA’s 

Jet Propulsion Lab.  The science instrument 
and navigation  plan is from NASA Goddard 
Space Flight Center.  The data/navigation 

radio is from the Jet Propulsion Lab. 
 

Lunar IceCube Spacecraft description 

 

Lunar IceCube, ion drive at bottom 

 

Iodine ion drive 

 
Lunar IceCube will use a Busek BIT-3 ion 
drive using solid iodine as the propellant. 

Busek BIT-3 in operation. 
 

This drive has a 3cm output grid, a 1.2 mN 

thrust and is mounted on gimbals for 
steering. 

 
Computer 

 

The main computer is a Space Micro Proton 
400K.  It uses a Freescale 2020 high 

performance processor, 1 Ghz, 32-bit (per 
core) dual core processor with 36-bit  
physical addressing.  It is radiation hardened 

for operation beyond low Earth orbit. 

Proton 400K CPU board 

 

BIRCHES 

 
The Broadband InfraRed Compact High 
Resolution Exploration Spectrometer from 

Goddard will be used to map water and 
other volatiles on the surface of the Moon. 

 
Iris 2  
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Iris 2 X-band radio. 

 
Iris Version 2 is a CubeSat/SmallSat 

compatible transponder developed by  
the National Aeronautics and Space 
Administration’s (NASA’s) Jet Propulsion  

Laboratory (JPL) as a low volume and mass, 
lower power and cost, software/ 

firmware defined telecommunications 
subsystem for deep space. Iris V2’s features  
include 0.5 U volume, 1.1 kg mass, 26 W 

DC power consumption when fully  
transponding at 5 W radio frequency output 

(8 W DC input for receive only), and  
interoperability with NASA’s Deep Space 
Network (DSN supporting CCSDS 

standards and SLE data packet protocol. (the 
CCSDS file transfer protocol was the first 

SPARK/Ada software written for Lunar 
IceCube by our students) at X-Band 
frequencies (7.2 GHz uplink, 8.4 GHz 

downlink) for command, telemetry, and 
navigation.  

The radio supports a wide range of data rates  
needed for wide range of distances, and has 
full duplex capabilities appropriate for 

Doppler and ranging. Iris 2 utilizes a Gaisler 
LEON3-FT softcore (on Virtex 6). The 

system produces 37 dBm transmit power 
with-130 dBm receive sensitivity. 
 

ADACS 

 

 
XACT star tracker/momentum wheels 

 

 

We are using a Blue Canyon Technologies 
XB-1 system, consisting of two XACT  
Micro Star Tracker and Micro Reaction 

Wheel assemblies.  XACT features 3-axis 
Stellar Attitude Determination in a micro-

package.  Multiple reference frames: 
Inertial, LVLH, Earth-Fixed, and Solar. 
Precise 3-axis control is provided by low 

jitter reaction wheels, torque rods and 
integrated control algorithms.  

 
PV panels 

 

Power will be supplied with a 120W (in two 
panels) MMA E-HaWK™ Deployable Solar 

Panel Array, both of which are aimed with 
Honeybee Robotics solar array drives. 
 

 
MISSION 

 

Transfer to Lunar orbit 

 

Launch using EM-1: Lunar IceCube will be 
injected into a direct transfer as a payload 

onboard EM-1. Our mission profile uses the 
Interim Cyrogenic Propulsion Stage (ICPS) 
disposal state that occurs at approximately 

1-hr after the EM-1 injection as our initial 
condition.  

This state, if unchanged, would result in a 
lunar gravity assist at an approximate lunar 
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altitude of 1300-km and enter into a 
heliocentric drift-away orbit. We will use 

the described low-thrust propulsion system 
to modify the trajectory derived from the 

supplied state in order to change the first 
lunar flyby to different B-Plane components 
with a radial distance of 9239 km,  

permitting a post lunar flyby design that 
incorporates dynamical systems (manifolds) 

and minimizing the total required delta-v.  
 
Collecting data 

 

Data will be collected from the BIRCHES 

instrument and stored, as during operation, 
the BIRCHES end of the spacecraft must 
point to the Lunar zenith. 

 
Data download 

 

After a data collection pass, the spacecraft 
will be rotated by the ADACS so that the 

patch antennas will point toward the Earth 
for communication with the DSN. 

 
Lunar IceCube software 
 

As can be seen from the great complexity of 
the spacecraft systems and operations, the 

software for Lunar IceCube will be very 
substantially more complex than our current 
CubeSat software.  We have proven the 

utility of the high integrity software 
technology of SPARK/Ada in that of the 12 

university CubeSats we were launched with, 
we are the only one operational.  We are 
looking at several software design tools to 

help with the overall design, such as UML 
and Simulink based.  Our current Cubesat 

software was created in a rather ad hoc 
fashion, but the complexity of Lunar 
IceCube will require a much more structured 

approach. 
 

End - Moon or Mars? 

 

At the end of the data collection period of 
about six months, the spacecraft cannot be 

left in Lunar orbit.  With no atmosphere, it 
would remain there indefinitely.  We have 

permission to dispose of it by using the ion 
drive to deorbit and crash into the Moon.  
Another option, if volume considerations 

allow the full initial design quantity of 
iodine (a 350cc tank, holding 1.75kg of 

iodine), we would have enough delta-v, 
2,800 ms-1, when only about 850 ms-1 is 
needed for the Lunar mission) capability to 

leave Lunar orbit and head to Mars.  The 
final experiment would be to see how long 

we could remain in radio contact with Lunar 
IceCube. 
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