
Speed-Up
Peter Chapin

CIS-4230, Parallel Programming
Vermont State University



“What Happened To My Speed-Up?”

• There are several reasons why speed-up might be poor…
• “Hyperthreading” isn’t helping (much)
• Amdahl’s Law
• Overhead of…

• … thread creation/destruction
• … thread synchronization

• Thread interference
• Threads are blocked too much waiting for each other. This is different than overhead 

which is about the time spent actually changing a thread’s state. Overheads are generally 
small, but a poorly designed program can have large wait times.

• Memory access issues ← Usually the biggest problem



Hyperthreading

• “Hyperthreading” is an Intel marketing term
• … but other process vendors have a similar technology

• Create two (or more) register files in the CPU
• … this allows two (or more) threads to execute “simultaneously.”

• Let the threads share the functional units (FUs)
• Functional Unit: ALU, address calculator, FPU, barrel shifter, etc.
• Typically, multiple function units of the same type (e.g., two ALUs)
• The program does not use all the FUs at the same time
• The second thread can use the FUs that would otherwise be idle



Hyperthreading Doesn’t Work (very well)

• Problems:
• A well-coded program (at the assembly language level) orders instructions so 

that their overlapping execution keeps as many FUs as busy as possible
• … so there really aren’t that many “idle” FUs.
• Typically, compilers write assembly language, so this depends on good compilers
• It also depends on the sort of program one is trying to run.

• As a result, hyperthreads are often stalled, waiting for an available FU
• Intel states speed-ups of 1.3 might be typical in a “good situation.”

• In practice speed ups are even less… and might hover around 1.1.

• Why bother?
• It is easy to implement, so why not? Plus, it sounds good on paper.



Hyperthreading Works When…

• Conditions favorable to hyperthreading:
• Lousy compilers that don’t order instructions well

• … but the CPU itself might be able to compensate for that due to “out of order” 
execution features.

• … so a cheaper CPU might also be necessary for effective hyperthreading (ironically).
• Threads that do very different things

• e.g., one thread doing intensive floating point (and thus using the FPU) while another 
thread does strictly integer calculations on the ALU(s) and address calculator(s), etc.

• On a typical system, this might actually come up. It is less likely in a parallel programming 
context.



Lemuria

• Consider Lemuria…
• 2 processors x 4 cores/processor x 2 hyperthreads/core = 16 threads
• Speed-up of 16?

• Not likely!
• Probably closer to 8-10, even under ideal conditions (i.e., no other issues causing speed-

up problems)
• … especially when all threads try to use the FPUs… lots of stalling of the hyperthreads

waiting for access to the floating point unit(s).
• In fact, the system overhead of managing the extra “nearly useless” threads 

might be greater than whatever small benefit they provide
• Try forcing the thread count to 8 instead of using the system-reported count of 16. 

Performance might actually be better!



Amdahl’s Law

• Fundamental Issue:
• Programs typically have a serial portion and a parallelizable portion. Even if 

the parallelizable portion is made to execute “instantly” (lots of threads), the 
serial portion runs at the same speed as before.

• Thus… the maximum speed-up is bounded.
• Example:

• Serial portion: 25% of execution time
• Parallelizable portion: 75% of execution time (when run in a single thread)
• Maximum speed-up = 4 no matter how many processors are applied.



Example Continued

• The good news is that typically (hopefully!), the parallelizable portion 
grows more rapidly as the problem grows. Thus…

• Serial portion: O(n)
• Parallelizable portion: O(n2)
• Now double the problem size…

• Serial portion: 2*25% of original execution time
• Parallelizable portion: 4*75% of original execution time
• If the Parallelizable portion executes “instantly” due to aggressive parallelization, the 

speed-up becomes: ((2 * 0.25) + (4 * 0.75)) / (2 * 0.25) = 7
• We tend to only care about large problems. Thus, Amdahl’s Law isn’t scary.

• Provided the asymptotic growth of the parallelizable portion is large.



Thread Overhead

• It takes time to manipulate threads
• The system is involved when creating and destroying threads

• They are hardware entities. User mode threads offer no real parallelism
• The system is involved when threads synchronize

• Mutex objects, condition variables, barriers, etc.
• Suspending a thread and then finding and starting another one is significantly complex.

• If the work done between synchronization operations is too small…
• The time spent managing the threads will be a large percentage, and speed-up suffers

• BUT…
• Usually, this overhead shrinks (as a percentage) as the problem size grows.



Thread Interference

• If a thread stalls waiting for something to happen…
• … a processor is underutilized. Speed-up suffers

• Consider barriers:
• A team of threads executes a for loop in parallel, with each thread doing a 

subset of all the loop’s iterations.
• Suppose one thread finishes early

• Its work unit is easier than the others for some reason
• That thread waits at the barrier, doing nothing until the other threads finish.



Memory Issues

• The BIG ONE!
• In the old days, processor performance was what held things back
• Today it is the limited memory bus bandwidth.

• The memory hierarchy
• Registers: access time 1 ns or less
• L1 cache: access time ~10ns
• L2 cache: access time ~25ns
• Main memory: access time ~100s of ns

• Reading a value from main memory can take, literally, 100 times as 
long as reading a value from a register!



Caching

• Without the caches, the CPUs we have would be pathetically slow
• But… caches depend on “locality of reference” to work.

• Values are reused often
• Values close to each other in memory are often used together
• Values are reused closely in time

• The frequently used values are stored in a (small, fast(er)) cache 
where they can be accessed more quickly.

• This assumes the cache can hold all such values!



Terminology

• Cache “hit”: when the cache satisfies a memory access.
• This is still likely 5-10x slower than accessing a register.

• Cache “miss”: when the desired value is not in the cache
• Value fetched from main memory (or a lower level cache)… very… very… 

slowly… and then stored in the cache for later.
• Processor stalled while waiting for the memory access

• … or maybe not. It might be able to execute other upcoming instructions while it waits

• Cache “line”: Values are fetched from main memory in “lines.”
• … might be 8 or 16 bytes at a time… or more. Depends on the cache 

architecture. Thus, a miss might pre-fetch values we will need soon



Complex

• Cache Design is a highly complicated topic
• A topic for a computer architecture course
• Many designs exist with various properties

Hugely influences performance!
Especially when multiple threads are competing for access to the same memory



Multi-Core CPUs

• Various cache options
• Each core has its own L1 and L2 caches.

• Accessing data in cache does not influence the other core
• … but if a core brings a value into its cache, it doesn’t help the other core either
• Flushing a value out of the cache does not affect values in the other core’s cache

• Each core has its own L1 cache but the cores share an L2 cache
• Access to L2 might stall the other core
• … but if a core brings a value into L2, the other core can get it without main memory
• Flushing a value out of the cache prevents the other core from getting it (at least not 

without main memory access)



Multiple CPUs

• Rather different situation…
• No cache sharing

• No fetching a value the other CPU can use
• No flushing values the other CPU needs

• CPUs can still stall each other from accessing main memory

• Lemuria has multiple CPUs that are each multi-core
• Creates a very complex caching environment
• Hard to predict, analyze, and explain behaviors.



Cache Coherency

• Suppose two CPUs store the same value in their independent caches
• Now, suppose one of the CPUs modifies that value
• How does the other CPU know to read the modified value? It still has the 

original value in its cache!

• Cache Coherency hardware deals with this
• Many designs (refer to a computer architecture textbook)
• Basically, the caches must communicate to ensure only the most recent value 

is used. This creates hardware complexity and/or overheads.
• Further complicates the analysis



Where Does This Leave Us?

• Confused!
• The complexity of caching makes understanding behaviors difficult

• Tools Can Help
• Intel Parallel Studio (https://software.intel.com/en-us/parallel-studio-xe)
• Eclipse Parallel Tools Platform (https://www.eclipse.org/ptp/)

• Experimentation Helps
• But… regardless of the approach, a perfectly optimized program will likely 

only be perfectly optimized for one particular CPU/Cache architecture. Even a 
different model of the same CPU family will likely behave differently.

https://software.intel.com/en-us/parallel-studio-xe
https://www.eclipse.org/ptp/

	Speed-Up
	“What Happened To My Speed-Up?”
	Hyperthreading
	Hyperthreading Doesn’t Work (very well)
	Hyperthreading Works When…
	Lemuria
	Amdahl’s Law
	Example Continued
	Thread Overhead
	Thread Interference
	Memory Issues
	Caching
	Terminology
	Complex
	Multi-Core CPUs
	Multiple CPUs
	Cache Coherency
	Where Does This Leave Us?

