CIS-4020 Lab
Shared Memory

(© Copyright 2014 by Peter C. Chapin

Last Revised: October 24, 2014

1 Introduction

In this lab you will experiment with the System V
shared memory API. Unlike previous labs there is no
kernel programming in this lab; all programing is en-
tirely in user mode. The purpose of this lab is to
expose you to System V IPC (interprocess commu-
nication), and to give you some experience with the
concept of shared memory. The kernel implements
shared memory by mapping the same physical page
frames into the virtual address spaces of the sharing
processes. You will explore some of the implications
of this approach in this lab.

2 Shared Memory API

The System V API is a little unusual in a couple of re-
spects. First, the objects you create using it (shared
memory segments in our case) persist until they are
explicitly destroyed or until the system is rebooted.
Even if all processes that are using a shared memory
segment terminate, the shared memory segment will
continue to exist. A future process could still attach
to it and use it, assuming it had permission to do so.

Shared memory segments are identified with a “key.”
This key is usually generated from ftok using a mu-
tually agreed upon file name as a base. The file
name must refer to an existing, accessible file and
would typically be a file of significance to the system
using the shared memory. In addition ftok uses a

project identifier that allows different software sys-
tems to create distinct shared memory segments off
the same file name. In this lab use the file name cor-
responding to this document and a project identifier
of 1.

With the key in hand you can use shmget to create
a shared memory segment based on that key. This
function returns a segment identifier that you can use
in the later calls. The key is only needed for getting
the segment identifier.

Be aware that when you create a shared memory
segment using the IPC_CREAT flag, you should also
provide appropriate permissions to apply to the new
segment. For example 0666 permissions (the leading
zero is necessary to indicate that 666 is in octal) al-
low all users to read and write the segment. If you
forget to specifiy permissions, no permissions will be
applied and you will end up with a segment you can’t
manipulate. Furthermore the ipcs tool, mentioned
below, will not display any segments for which you
lack read access. Thus a segment with no permissions
will be invisible in ipcs.

To attach to the shared memory segment use shmat.
This function returns a pointer to the segment. You
may now use the segment like any other memory re-
gion with the understanding that some other process
may also be using it at the same time. It is permitted
for multiple processes to attach to the same segment
(indeed, that is why it is a shared memory segment).

When you no longer need the segment you should call
shmdt to detach from it. The segment is not removed



even if all processes detach from it unless an appro-
priate flag has been given to the shmctl function.

Please review the manual pages for all the functions
mentioned above to familiarize yourself with their op-
eration.

3 Programs

For this lab you are to write two programs. The first
program should create a shared memory segment (the
exact size is not important), copy the string “Hello,
World” into the segment and then pause. The second
program should attach to the segment, display the
string that it finds in the segment (as left by the
first program), detach from the segment and then
terminate. When the first program resumes, it should
also detach from the segment. Do the following:

1. Run the two programs above and verify that they
behave as expected.

2. Modify the programs so that they print the ad-
dress of the shared memory segment (use the %p
format specifier with printf). Take note of the
addresses the programs see.

3. What happens if you run the first program to
completion and then run the second program af-
ter the first one has terminated?

Use the ipcs command to view the shared memory
segments and ipcrm to remove the left over segment
created by your test programs. What happens when
you run the program that uses the shared memory
segment if the segment does not exist?

4 Report

Write a report for this lab following the lab report
template provided by your instructor. Include the
significant parts of your code, some comments about
how it works, and what you observed.



