
## CIS 3210 Network Address Translation



## **NAT** Operation

#### Internet Concerns

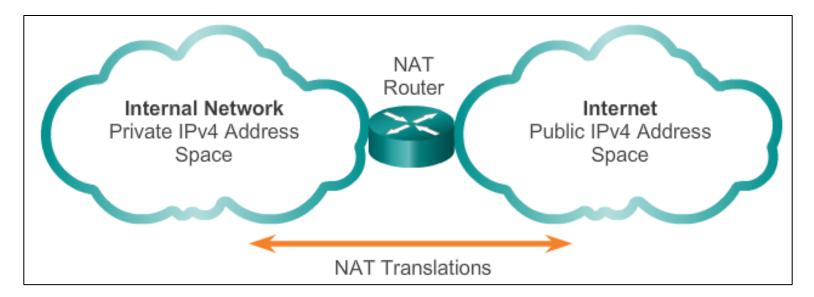
- There are not enough public IPv4 addresses to assign a unique address to each device connected to the Internet.
  - In 1990, the IETF was concerned with this limited supply of IPv4 addresses.
- Therefore the IETF developed several solutions to help stave off this depletion of global IPv4 addresses:
  - Subnetting
  - Variable-length subnet masking (VLSM)
  - Classless interdomain routing (CIDR)
  - Route summarization
  - Private addressing and NAT
  - Long term solution: IP version 6 (IPv6)

#### **Private Addresses**

- The IETF developed <u>RFC 1918</u> which identified three IPv4 address ranges that were deemed as "Private".
- Specifically, RFC 1918 identified these three ranges:

| Class | RFC 1918 Range |                   | CIDR Prefix    |
|-------|----------------|-------------------|----------------|
| А     | 10.0.0.0       | - 10.255.255.255  | 10.0.0/8       |
| В     | 172.16.0.0     | - 172.31.255.255  | 172.16.0.0/12  |
| С     | 192.168.0.0    | - 192.168.255.255 | 192.168.0.0/16 |

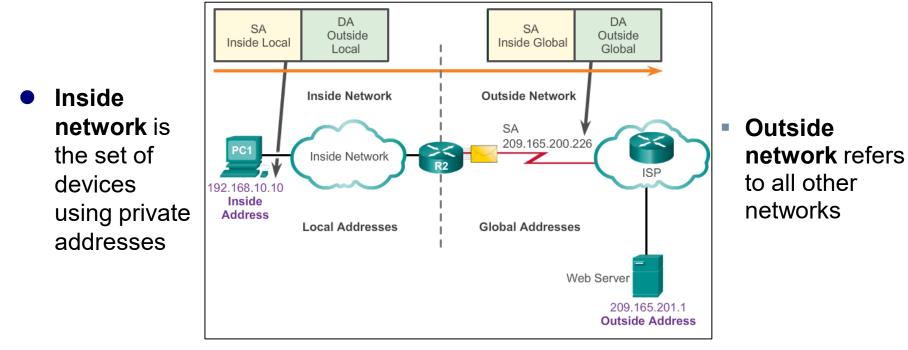
#### **Private Addresses**

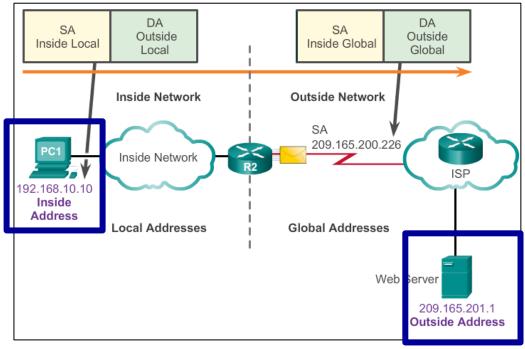

- Private addresses are used within an organization to allow devices to communicate locally.
- However, private IPv4 addresses can't be routed over the Internet.
  - Private addresses have no global significance.
  - Internet routers filter private addresses and drop the traffic.
- So how do internal computers access the Internet?

### Network Address Translation (NAT)

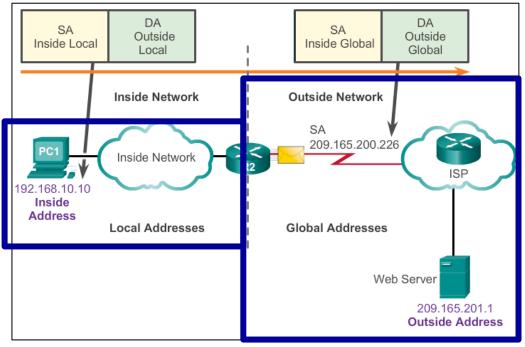
- To provide Internet access to private hosts, the IETF developed <u>RFC 1631</u>: The IP Network Address Translator (NAT).
- NAT and private addresses helped IPv4 fight off address depletion.
  - Without NAT, the exhaustion of the IPv4 address space would have occurred by the year 2000.

### Network Address Translation (NAT)


- NAT translates the internal private address into a valid external public address.
  - Used to provide corporate hosts access to the Internet.
  - Also used to provide Internet access to home networks.

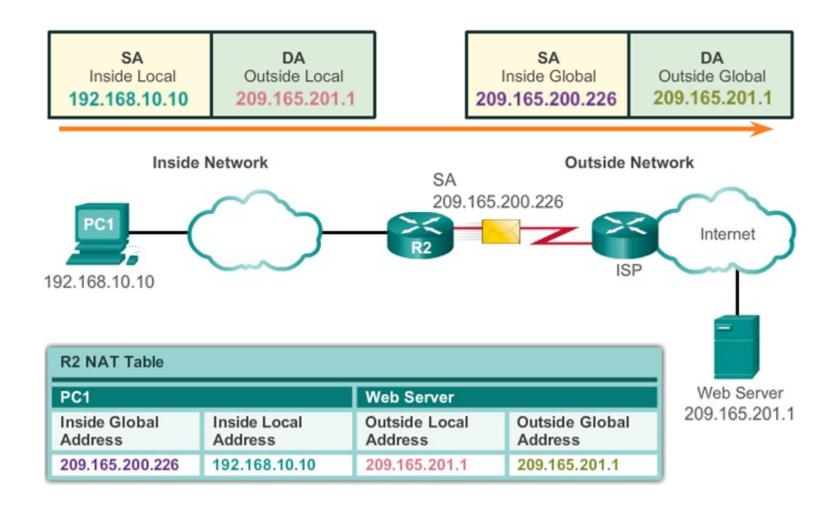



NAT swaps the private source IP address for a public IP address.

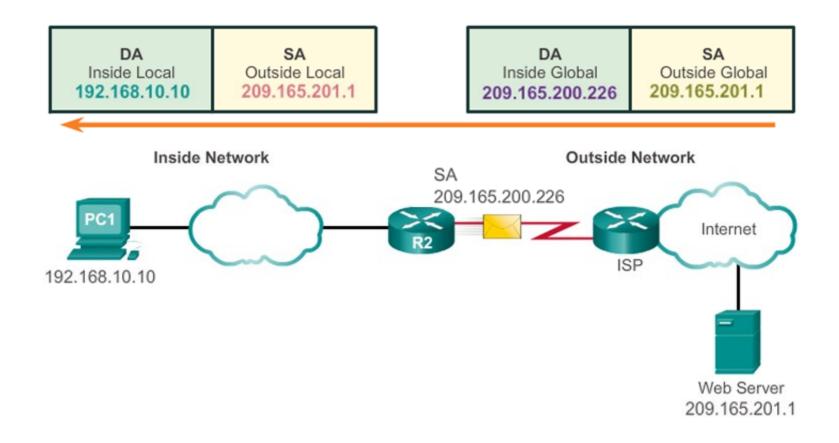

### NAT Advantages / Disadvantages

| Advantages                                               | Disadvantages                                           |
|----------------------------------------------------------|---------------------------------------------------------|
| Conserves legally registered addresses                   | Translation may introduce switching path delays         |
| Increases flexibility when connecting to Internet        | Loss of end-to-end IP traceability                      |
| Hides IP addresses inside the network from outside users | Certain applications will not function with NAT enabled |
| Can handle network with overlapping addresses            | Requires memory to maintain translation table           |
| Eliminates address renumbering as network changes        |                                                         |






- NAT terminology is always applied from the perspective of the device with the translated address:
  - Inside address: The address of the device which is being translated by NAT.
  - **Outside address**: The address of the destination device.




- NAT also uses the concept of local or global with respect to addresses:
  - Local address: A local address is any address that appears on the inside portion of the network.
  - **Global address**: A global address is any address that appears on the outside portion of the network.

### NAT Terminology Example



### NAT Terminology Example



### Three Types of NAT Applications

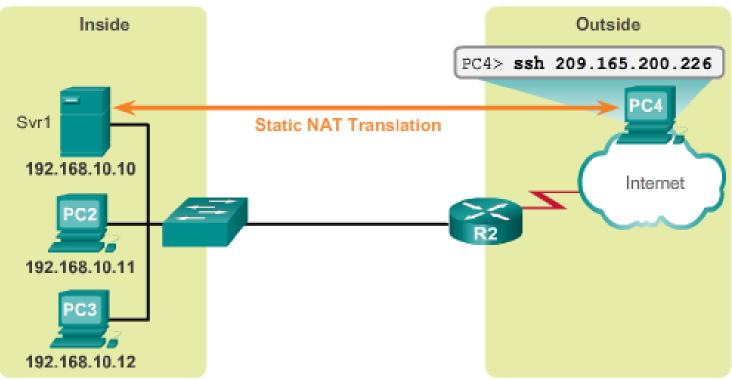
Static address translation (static NAT):

• One-to-one address mapping between local and global addresses.

#### Dynamic address translation (dynamic NAT):

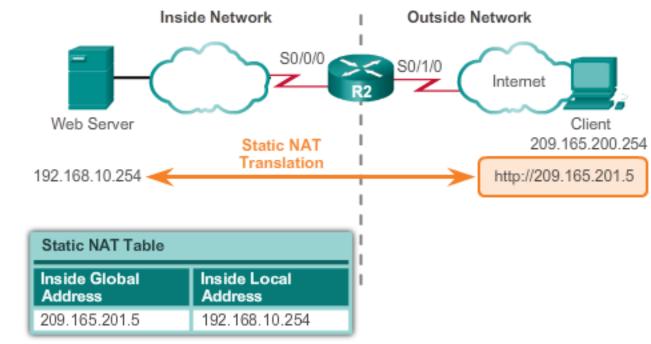
 Many-to-many address mapping between local and global addresses.

#### Port Address Translation (PAT):


- Many-to-one address mapping between local and global addresses.
- This method is also known as overloading (NAT overloading).

### Static NAT

#### Static NAT


- Permanently bind an inside local address to an inside global address.
- Mappings are configured by the administrator and remain constant.
- Typically used to configure an internal server that must be accessed from the outside world.

#### Static NAT



| Static NAT Table     |                                                       |  |
|----------------------|-------------------------------------------------------|--|
| Inside Local Address | Inside Global Address - Addresses<br>reachable via R2 |  |
| 192.168.10.10        | 209.165.200.226                                       |  |
| 192.168.10.11        | 209.165.200.227                                       |  |
| 192.168.10.12        | 209.165.200.228                                       |  |

### Configuring Static NAT Example



```
R2 (config) # ip nat inside source static 192.168.10.254 209.165.201.5
R2 (config) #
R2 (config) # interface Serial0/0/0
R2 (config-if) # ip address 10.1.1.2 255.255.255.252
R2 (config-if) # ip nat inside
R2 (config-if) # exit
R2 (config) # interface Serial0/1/0
R2 (config-if) # ip address 209.165.200.225 255.255.224
R2 (config-if) # ip nat outside
R2 (config-if) # ip nat outside
R2 (config-if) #
```

| Verifying<br>Static NAT<br>Example | Insid<br>Web Server<br>192.168.10.254                         | Ie Network                                | U Outside N | letwork<br>Internet<br>Client<br>209.165.200.254<br>http://209.165.201.5 |
|------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------|--------------------------------------------------------------------------|
|                                    | Static NAT Table<br>Inside Global<br>Address<br>209.165.201.5 | Inside Local<br>Address<br>192.168.10.254 |             |                                                                          |
| R2# show ip nat translat           | cions                                                         |                                           |             |                                                                          |
| Pro Inside global I<br>global      | Inside local                                                  | Outside                                   | local       | Outside                                                                  |
| 209.165.201.5 1<br>R2#             | 192.168.10.254                                                |                                           |             |                                                                          |

The static translation during an active session.

| R2# show ip nat trans | Lations        |                 |         |
|-----------------------|----------------|-----------------|---------|
|                       | Inside local   | Outside local   | Outside |
| global                |                |                 |         |
| 209.165.201.5         | 192.168.10.254 | 209.165.200.254 |         |
| 209.165.200.254       |                |                 |         |
| R2#                   |                |                 |         |

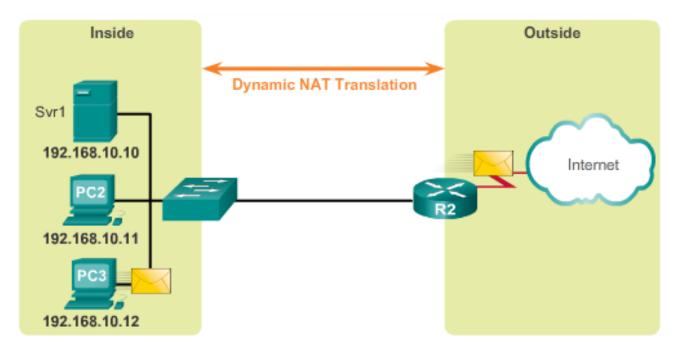
### Verifying Static NAT Example

R2# clear ip nat statistics

```
R2# show ip nat statistics
Total active translations: 1 (1 static, 0 dynamic; 0 extended)
Peak translations: 0
Outside interfaces:
   Serial0/0/1
Inside interfaces:
   Serial0/0/0
Hits: 0 Misses: 0
```

<Output omitted>

Client PC establishes a session with the Web server

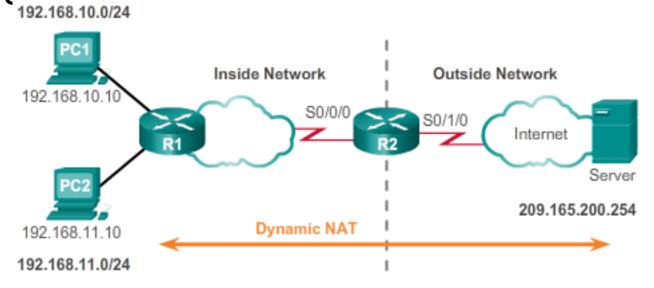

```
R2# show ip nat statistics
Total active translations: 1 (1 static, 0 dynamic; 0 extended)
Peak translations: 2, occurred 00:00:14 ago
Outside interfaces:
   Serial0/1/0
Inside interfaces:
   Serial0/0/0
Hits: 5 Misses: 0
<Output omitted>
```

## Dynamic NAT

### **Dynamic NAT**

- Dynamic NAT uses a pool of public addresses and assigns them on a first-come, first-served basis.
- When an inside device requests access to an outside network, dynamic NAT assigns the inside local address an inside global address from a pool of addresses.

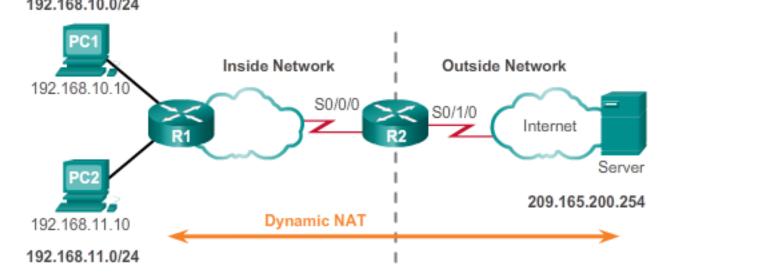
### Dynamic NAT Example




| IPv4 NAT Pool        |                                                            |  |  |
|----------------------|------------------------------------------------------------|--|--|
| Inside Local Address | Inside Global Address Pool -<br>Addresses reachable via R2 |  |  |
| 192.168.10.12        | 209.165.200.226                                            |  |  |
| Available            | 209.165.200.227                                            |  |  |
| vailable             | 209.165.200.228                                            |  |  |
| vailable             | 209.165.200.229                                            |  |  |
| vailable             | 209.165.200.230                                            |  |  |

### **Dynamic NAT Configuration Steps**

- 1. Define the pool of addresses that will be used for translation.
  - Configured using the ip nat pool pool-name start-ip endip {netmask netmask | prefix-length prefix-length} global configuration command.
- 2. Configure a standard ACL to identify (permit) only those addresses that are to be translated.
- 3. Bind the ACL to the pool.
  - Configured using the ip nat inside source list acl-#
     pool pool-name global config command.
- 4. Identify the inside and outside NAT interfaces.
  - Configured using the **ip nat inside** and **ip nat outside** interface configuration commands.


### Configuring Dynamic NAT Example



R2(config) # ip nat pool NAT-POOL1 209.165.200.226 209.165.200.240 netmask 255.255.255.224

```
R2 (config) #
R2 (config) # access-list 1 permit 192.168.0.0 0.0.255.255
R2 (config) # ip nat inside source list 1 pool NAT-POOL1
R2 (config) #
R2 (config) # interface Serial0/0/0
R2 (config-if) # ip nat inside
R2 (config-if) # exit
R2 (config) # interface Serial0/1/0
R2 (config-if) # ip nat outside
```

# Verifying Dynamic NAT Example



| R2# show ip nat translations |               |               |         |  |
|------------------------------|---------------|---------------|---------|--|
| Pro Inside global            | Inside local  | Outside local | Outside |  |
| global                       |               |               |         |  |
| 209.165.200.226              | 192.168.10.10 |               |         |  |
| 209.165.200.227              | 192.168.11.10 |               |         |  |
| R2#                          |               |               |         |  |
|                              |               |               |         |  |

### Verifying Dynamic NAT Example

```
R2# clear ip nat statistics
R2#
<PC1 and PC2 establish sessions with the server>
R2# show ip nat statistics
Total active translations: 2 (0 static, 2 dynamic; 0 extended)
Peak translations: 6, occurred 00:27:07 ago
Outside interfaces:
  Serial0/0/1
Inside interfaces:
  Seria10/1/0
Hits: 24 Misses: 0
CEF Translated packets: 24, CEF Punted packets: 0
Expired translations: 4
Dynamic mappings:
-- Inside Source
[Id: 1] access-list 1 pool NAT-POOL1 refcount 2
pool NAT-POOL1: netmask 255.255.255.224
          start 209.165.200.226 end 209.165.200.240
          type generic, total addresses 15, allocated 2 (13%), misses 0
Total doors: 0
Appl doors: 0
Normal doors: 0
Oueued Packets: 0
R2#
```

### Dynamic NAT Timeout

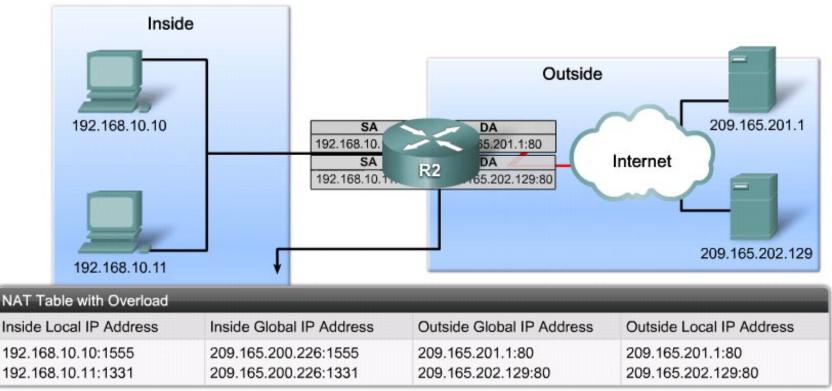
Router(config)# ip nat translation timeout sec

Router(config)# ip nat translation timeout 120

It is useful to use the **clear ip nat translations** \* before verifying translations.

- Dynamic translations are temporary, and will eventually time out (default 24 hours).
  - Timeout can be configured.
    - It is important for translation table entries to time out so that addresses in the pool become available for other hosts.
    - If translation table entries do not time out fast enough, the entire pool of addresses could be in use.

Address Port Address Translation (PAT)

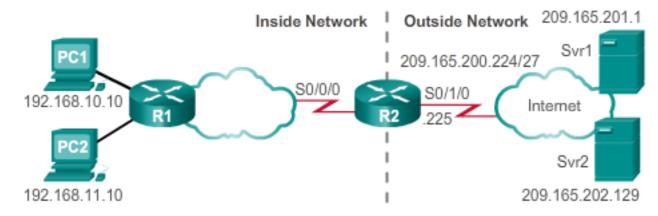

### NAT Overload (PAT)

- PAT (also called NAT overload) allows the router to use one inside global address for many inside local addresses.
  - With address overloading, many privately addressed nodes can access the Internet using a single global address.
- There are two ways to configure PAT:
  - ISP allocates a single public IPv4 address
  - ISP allocates more than one public IPv4 address

#### • Note:

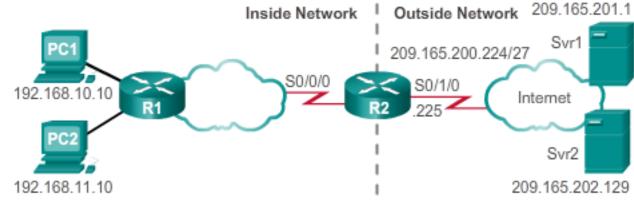
- Over 65,000 inside addresses can theoretically map to a single outside address.
- However, 4000 local addresses per global address is more realistic.
- Each NAT translation consumes about 160 bytes of router DRAM.

### NAT Overload (PAT)




- The NAT router keeps track of the different conversations by mapping TCP and UDP port numbers in the translation table.
  - Called an <u>extended table entry</u>.

### Steps for Configuring PAT Using a Pool


- 1. Define the pool of addresses that will be used for translation.
  - Configured using the ip nat pool pool-name start-ip endip {netmask netmask | prefix-length prefix-length} global configuration command.
- 2. Configure a standard ACL to identify (permit) only those addresses that are to be translated.
- 3. Bind the ACL to the pool.
  - Configured using the ip nat inside source list acl-#
     pool pool-name overload global config command.
- 4. Identify the inside and outside NAT interfaces.
  - Configured using the **ip nat inside** and **ip nat outside** interface configuration commands.

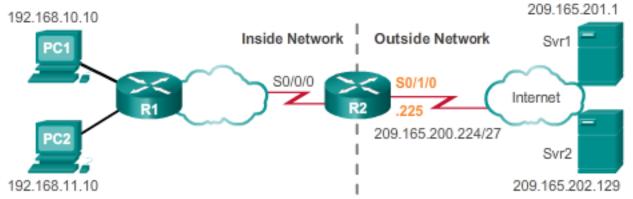
### Configuring PAT Using a Pool Example



R2(config)# ip nat pool NAT-POOL2 209.165.200.226 209.165.200.240 prefixlength 27 R2(config)# R2(config)# access-list 1 permit 192.168.0.0 0.0.255.255 R2(config)# R2(config)# ip nat inside source list 1 pool NAT-POOL2 overload R2(config)# R2(config)# interface Serial0/0/0 R2(config-if)# ip nat inside R2(config-if)# exit R2(config-if)# exit R2(config)# interface Serial0/1/0 R2(config-if)# ip nat outside

#### Verifying PAT Using a Pool Example



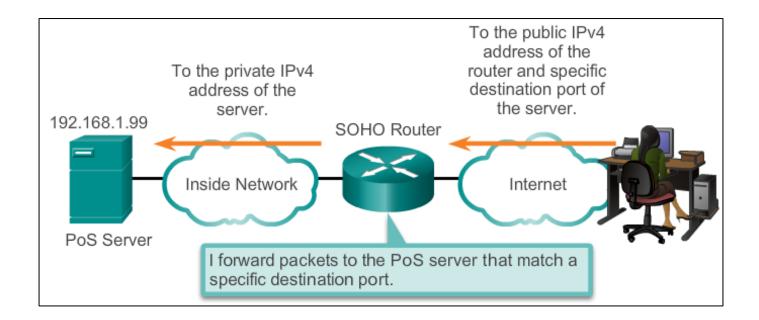

| 1                                                                                             |                            |                                     |                    |                  |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|--------------------|------------------|--|--|--|
| tcp 209.165.200.226:51839 192.168.10.10:51839 209.165.201.1:80 209.165.201.1:80               | R2# show ip nat translatio | <pre>show ip nat translations</pre> |                    |                  |  |  |  |
| 1                                                                                             | Pro Inside global          | Inside local                        | Outside local      | Outside global   |  |  |  |
|                                                                                               | tcp 209.165.200.226:51839  | 192.168.10.10:51839                 | 209.165.201.1:80   | 209.165.201.1:80 |  |  |  |
| tcp 209.165.200.226:42558 192.168.11.10:42558 209.165.202.129:80<br>209.165.202.129:80<br>R2# | 209.165.202.129:80         | 192.168.11.10:42558                 | 209.165.202.129:80 |                  |  |  |  |

### Verifying PAT Using an Address Example

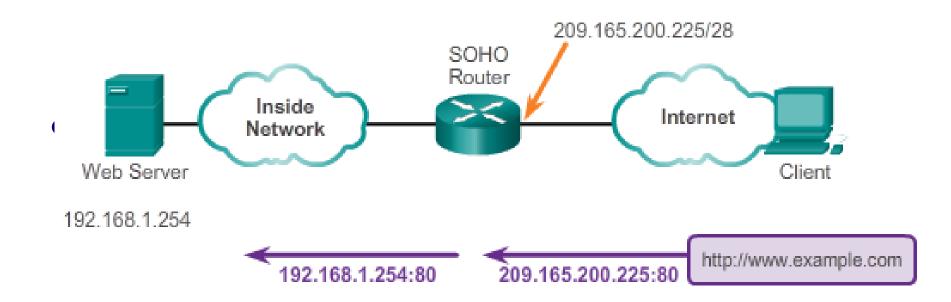
R2# clear ip nat statistics

```
R2# show ip nat statistics
Total active translations: 2 (0 static, <mark>2 dynamic; 2 extended)</mark>
Peak translations: 2, occurred 00:00:05 ago
Outside interfaces:
  Serial0/0/1
Inside interfaces:
  Seria10/1/0
Hits: 4 Misses: 0
CEF Translated packets: 4, CEF Punted packets: 0
Expired translations: 0
Dynamic mappings:
-- Inside Source
[Id: 3] access-list 1 pool NAT-POOL2 refcount 2
pool NAT-POOL2: netmask 255.255.255.224
          start 209.165.200.226 end 209.165.200.240
          type generic, total addresses 15, allocated 1 (6%), misses 0
Total doors: 0
Appl doors: 0
Normal doors: 0
Oueued Packets: 0
R2#
```

#### Configuring PAT Using an Address Example




```
R2(config)# access-list 1 permit 192.168.0.0 0.0.255.255
R2(config)#
R2(config)# ip nat source list 1 interface serial 0/1/0 overload
R2(config)#
R2(config)# interface Serial0/0/0
R2(config-if)# ip nat inside
R2(config-if)# exit
R2(config)# interface Serial0/1/0
R2(config)# interface Serial0/1/0
```


## Port Forwarding

## Port Forwarding

- Port forwarding (sometimes referred to as *tunneling*) is the act of forwarding traffic addressed to a specific a network port from one network node to another.
  - Helpful in situations where servers have private addresses, not reachable from the outside networks.
  - Port forwarding can be enabled for applications by specifying the inside local address that requests should be forwarded to.



#### Port Forwarding Example



## Port Forwarding Example

| Marris and the second second second            |                       |                   |                  |            |         |      |
|------------------------------------------------|-----------------------|-------------------|------------------|------------|---------|------|
| View and change router settings                |                       |                   |                  |            |         |      |
| Firewall DMZ App                               | ps and Gaming         |                   |                  |            |         |      |
| Filewali Diviz Ap                              | ps and Gaming         |                   |                  |            |         |      |
|                                                |                       |                   |                  |            |         |      |
| DDNS   Single Det Ferwarding                   | Det Dange Featureding | Port Dange Trigge |                  |            |         |      |
| DDNS   Single Port Forwarding                  |                       | Port Range Trigge |                  |            |         |      |
| DDNS   Single Port Forwarding Application name |                       | Port Range Trigge | ring<br>Protocol | Device IP# | Enabled |      |
|                                                |                       |                   |                  | Device IP# | Enabled | Save |

 The Linksys router is configured to redirect the HTTP requests to the internal web server at 192.168.1.254 using the default port number 80.

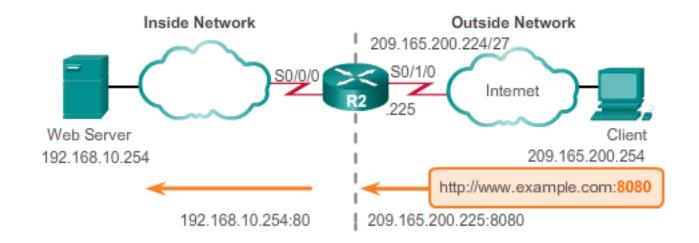
#### **Using Non-Default Port Numbers**

- A port other than the default can be specified.
  - For instance, in the previous example, the default HTTP port 80 can be changed to something else.
- Useful if you want to "hide" the service from others.
- However, the external user would have to know the specific port number to use.

## **Using Non-Default Port Numbers**

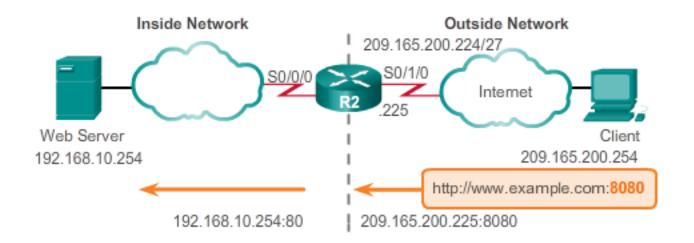
 To specify a different port, the value of the External Port in the Single Port Forwarding window would be modified.

| and change router settings |                            |                                                   |                                                                        |                                                                            |                                                                            |                                                                            |
|----------------------------|----------------------------|---------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                            |                            |                                                   |                                                                        |                                                                            |                                                                            |                                                                            |
| rewall DMZ App             | s and Gaming               |                                                   |                                                                        |                                                                            |                                                                            |                                                                            |
|                            |                            |                                                   |                                                                        |                                                                            |                                                                            |                                                                            |
| S   Single Port Forwarding | Port Range Forwarding      | g   Port Range Trigge                             | ering                                                                  |                                                                            |                                                                            |                                                                            |
| Application name           | External Port              | Internal Port                                     | Protocol                                                               | Device IP#                                                                 | Enabled                                                                    |                                                                            |
|                            |                            |                                                   |                                                                        |                                                                            | 12                                                                         | Save                                                                       |
|                            | S   Single Port Forwarding | S   Single Port Forwarding   Port Range Forwardin | S   Single Port Forwarding   Port Range Forwarding   Port Range Trigge | S   Single Port Forwarding   Port Range Forwarding   Port Range Triggering | S   Single Port Forwarding   Port Range Forwarding   Port Range Triggering | S   Single Port Forwarding   Port Range Forwarding   Port Range Triggering |


- External users would now have to use the outside web address with ":8080" appended to it.
  - E.g., http://209.165.200.225:8080

## **Configuring Port Forwarding with IOS**

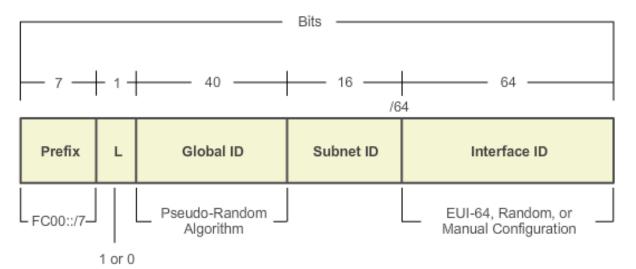
- In IOS, Port forwarding is essentially a static NAT translation with a specified TCP or UDP port number.
  - Configured using the ip nat inside source {static {tcp | udp local-ip local-port global-ip global-port} [extendable] global configuration command.


| Parameter  | Description                                                                                                                                                          |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| tcp Or udp | <ul> <li>Indicates if this is a TCP or UDP port number.</li> </ul>                                                                                                   |  |  |
| local-ip   | <ul> <li>This is the IPv4 address assigned to the inside host (typically a private address).</li> </ul>                                                              |  |  |
| local-port | <ul> <li>Sets the local TCP/UDP port in a range from 1-65535.</li> <li>This is the port number the server is listening on.</li> </ul>                                |  |  |
| global-ip  | <ul> <li>Sets the global TCP/UDP port in a range from 1-65535.</li> <li>This is the port number the outside client will use to reach the internal server.</li> </ul> |  |  |
| extendable | The option is applied by default and allows the router to extend the translation to more than one port if necessary.                                                 |  |  |

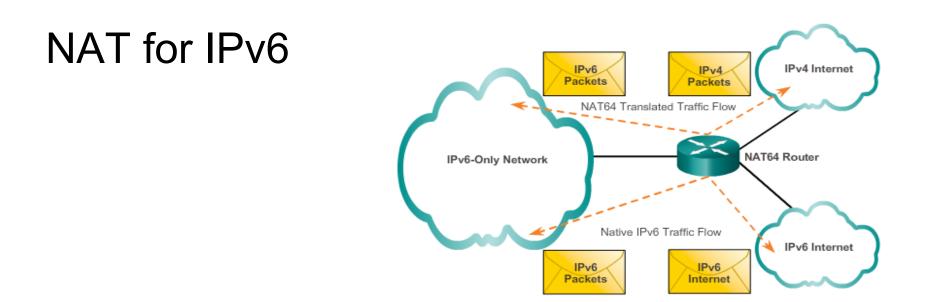
#### **IOS Port Forwarding Example**



```
R2(config)# ip nat inside source static tcp 192.168.10.254 80
209.165.200.225 8080
R2(config)#
R2(config)# interface Serial0/0/0
R2(config-if)# ip nat inside
R2(config-if)# exit
R2(config-if)# exit
R2(config)# interface Serial0/1/0
R2(config-if)# ip nat outside
```


#### **IOS Port Forwarding Example**




| R2# | 2# show ip nat translations |      |                   |                       |                       |  |  |  |
|-----|-----------------------------|------|-------------------|-----------------------|-----------------------|--|--|--|
| Pro | Inside global               |      | Inside local      | Outside local         | Outside global        |  |  |  |
| tcp | 209.165.200.225:            | 8080 | 192.168.10.254:80 | 209.165.200.254:46088 | 209.165.200.254:46088 |  |  |  |
| tcp | 209.165.200.225:            | 8080 | 192.168.10.254:80 |                       |                       |  |  |  |
| R2# |                             |      |                   |                       |                       |  |  |  |
|     |                             |      |                   |                       |                       |  |  |  |

## Configuring NAT and IPv6

# IPv6 Unique Local Addresses – NOT for translation to GUA public address!



- IPv6 has identified unique local addresses (ULAs) which are <u>similar</u> <u>to private addresses</u> and are designed to allow IPv6 communications within a local site.
  - ULAs are also known as local IPv6 addresses (not to be confused with IPv6 link-local addresses).
- ULAs have the prefix FC00::/7, which results in a first hextet range of FC00 to FDFF.



- IPv6 can still use NAT but in a much different context.
- In IPv6, NAT64 was developed to provide transparent communication between IPv6 and IPv4.