
Type Conversion
CIS-3012, C++ Programming

Vermont State University
Peter Chapin

C-Style Type Conversion

• In C, use this syntax to explicitly request the conversion of one type to
another:

• The target type in parenthesis goes in front of what is to be
converted.
• The C-style cast operator is available in C++ for C compatibility…
• … but C++ has other, better ways to express type conversions.

long x = 42L; // ‘L’ suffix means “long.”
int y = (int)x; // A type “cast.”

The Problem with Type Casts

• C-Style type casts are a free-for-all:
• Can be used to do safe casts that are well-defined and well-behaved
• Can be used to do unsafe casts that are extremely system-dependent or

undefined
• Can be used to cast away const (i.e., remove constant-ness from objects and

pointers)

• This cast is well-defined:

double pi = 3.14159;
int approximate_pi = (int)pi; // Converts to 3

Strange C-Style Casts

• What do these do?

• The second example is a normal thing to do in C programs.
• The first example is just broken on machines with 32-bit integers

(why?)

double pi = 3.14159;
int approximate_pi = *(int *)π

unsigned long hardware_address = 0xFFFF001C;
unsigned char *device_register = (unsigned char *)hardware_address;
*device_register |= 0x02;

C++ Type Conversion Operators

• static_cast<T>(x)
• Converts x to type T safely if possible; compile error otherwise.

• const_cast<T>(x)
• Can only be used to add/remove constant-ness. Any other conversion is an

error.
• reinterpret_cast<T>(x)
• “Reinterprets” x as a T. Used for dangerous conversions.

• dynamic_cast<T>(x)
• Used to downcast in an inheritance hierarchy.

Static Cast

• Static casts can only be used for well-defined conversions.

long x = 42L;
int y = static_cast<int>(x); // No error or warning.

double pi = 3.14159;
int approximate_pi = static_cast<int>(pi); // No error or warning.

double pi = 3.14159;
int *p = static_cast<int *>(&pi);
 // Error! Can’t statically cast incompatible pointer types.

Const Cast

• Can only be used to remove (or add) constant-ness.

• There are times when temporarily removing constant-ness is useful…
• … when you know what the pointer is really pointing at, and you are going

after a special effect.

• That doesn’t mean you want an unsafe, ill-defined conversion of the
data!

void f(const char *pc) {
 char *p = const_cast<char *>(pc); // No error or warning.
 *p = ‘x’; // Trying to modify a constant!
}

Reinterpret Cast

• Reinterpret casts can reinterpret the bits of one value as if they were
another type.
• Can be dangerous. Usually very non-portable. Sometimes necessary.
• Often used with pointer types:

• Can be used for special effects:

unsigned char *hardware_register =
 reinterpret_cast<unsigned char *>(0xFFFF007E);

double pi = 3.14159; // Double precision is (almost always) 64 bits.
unsigned long raw_bits = // Assume unsigned long is 64 bits.
 reinterpret_cast<unsigned long>(pi);

Dynamic Cast

• We won’t discuss dynamic casts in this class!
• They are used to downcast in an inheritance hierarchy.

Implicit Conversions

• The C++ compiler will convert between certain types implicitly
• There is a school of thought that says all implicit conversions are bad for you
• … but many are convenient and completely safe

• Integer promotions
• Arithmetic conversions
• Signed/Unsigned conversions
• User-defined conversions

Integer Promotions

• Integer promotions are implicit conversions from a narrow integer to
a wider integer. They are completely safe.
• short → int
• int → long
• etc…

int count_special_things(const std::vector<Thing> &vec, const Thing &a_thing);

long count = count_special_things(some_vector, some_thing);

Implicit conversion from int to long.
No possible loss of information on any platform.
No compiler warning.

Arithmetic Conversions

• Includes Integer promotions, but also unsafe conversions
• long → int
• int → short
• unsigned int → int
• etc…

int count_special_things(const std::vector<Thing> &vec, const Thing &a_thing);

short count = count_special_things(some_vector, some_thing);

Implicit conversion from int to short.
Possible loss of information on some platforms.
Compiler warning possible (likely on platforms that actually experience loss).

Conversions in Expressions

• When types are mixed, the narrow type is promoted to the wider type
• The full rules are more complicated, but the statement above is the idea

int x = 42;
long y = 84;
double z = 3.14159;

x = x + y;
 // x is promoted to long, the addition is done as long.
 // The resulting long is converted (with possible loss) back to int for the assignment.

z = x + y;
 // x is promoted to long, the addition is done as long.
 // The resulting long is converted to double for the assignment.

Signed/Unsigned Conversions

• Consider int and unsigned int…
• The standard requires they have the same number of bits
• BUT… they have overlapping ranges
• Conversion in either direction is unsafe
• Avoid mixing signed and unsigned types!
• Fix any compiler warnings that arise from doing so

• Many bugs arise from such mixing

The type alias size_t

• C (and C++) define a type alias in various headers: size_t
• It is an unsigned integral type suitable for measuring the size of objects in

memory
• On 64-bit systems it is usually unsigned long. On 16-bit systems it is

usually unsigned int. You should always use size_t where it is
appropriate (for portability, don’t try to use the underlying type directly)

#include <cstring> // C++’s version of C’s header <string.h>

int length = std::strlen(s);

Warning: Mixing signed and unsigned types!
Warning: Possible loss of precision (64-bit size_t vs 32-bit int)
Fix warnings like these!

Why?

• Why does C allow unsafe implicit conversions?
• C++ does it for C compatibility… except when the uniform initialization syntax

is used… C compatibility isn’t an issue in that situation.

• Good question!
• Probably a “mistake” in the design of C.
• Many, many bugs and security problems arise because of this. The language

should never have allowed it.
• Modern C (and C++) compilers produce warnings for most unsafe

conversions… if you ask for them.
• Always use –Wall when compiling with g++! Treat warnings as errors!

User-Defined Conversions

• If you don’t like implicit conversions, you will hate this…
• C++ allows you to define implicit conversions for your classes
• There are two directions:
• Implicitly converting something to your class type
• Implicitly converting an instance of your class to something else

• The two directions are handled a little differently

Constructors w/ One Parameter

• Unless marked as explicit, constructors that can be called with one
argument are taken as an implicit conversion from the type of the
argument to the type of the class.

std::string s = “Hello, World”; String literals have type: const char *

There is a constructor for std::string that takes a const char * parameter.

Compiler uses that constructor to create a std::string temporary…
… and then initializes s from that temporary.

In this case, the temporary can be (and most likely is) optimized away.

Another (more typical?) Example

• This shows the implicit conversion being used with an argument

void process_string(const std::string &process_me);

process_string(“Hello, World”);

Here the compiler uses the single parameter constructor taking const char * to create
a std::string temporary for process_string.

Notice this only works because the parameter of process_string is a reference to const.
Otherwise, the compiler won’t bind that reference to a temporary.

Converting From Class

• To implicitly convert a class instance to some other type, use
conversion operators:

class BigFloat {
public:
 // …
 operator double() const;
};

BigFloat::operator double() const
{
 double result;

 // Do what must be done

 return result;
}

Now We Can Do…

• The class BigFloat is an infinite precision floating point type.

BigFloat pi{ “3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510” };
 // I assume BigFloat has a constructor that can handle the string above.

double approximate_pi = pi; // Calls BigFloat::operator double()
 // No warning about precision loss
 // Compiler doesn’t know what the conversion does

void process_number(double process_me);

process_number(pi); // Calls BigFloat::operator double()
 // Again, no warning about precision loss

