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Raw Pointers

• Traditional C-style pointers are called raw pointers
• They are nothing more than machine addresses
• Essentially, they are integers but have a different type

// Dynamically allocate space for an integer, initialized to 42.
int *p = new int{42};

// …

// Reclaim the dynamically allocated memory
delete p;



The Problems with Raw Pointers

• Raw pointers are very error-prone to use
• Dynamic memory could get deleted twice (double delete), causing UB*

• Dynamic memory might never get deleted (memory leak), wasting space
• Dynamic memory could be accessed after being deallocated (use-after-free), 

causing UB

• Many bugs in C programs are attributed to mishandling memory!

* Undefined Behavior



Garbage Collection?

• Many programming languages support garbage collection
• The runtime system periodically (or in some other way) invokes a 

garbage collector to reclaim the memory held by objects that are no 
longer accessible to the program.
• The JVM in Java does this, for example
• Very common; most languages do garbage collection



The Problems with Garbage Collection

• In the old days, the garbage collector could stall the program for 
significant time while it executed
• Not an issue with today’s advanced garbage collectors

• Even today, there is runtime cost of garbage collection that can be 
hard to evaluate
• This is an issue for real-time systems
• … although real-time garbage collection systems do exist

• The garbage collector is a large body of code
• … an issue for highly constrained systems



Manual Memory Management

• C (and C++) require the programmer to explicitly decide when 
allocated memory is released
• … using free( ) in C
• … using delete (or delete [] for arrays) in C++

• Pros:
• Simplified runtime system reduces code size
• Execution time characteristics are more deterministic

• Cons:
• Easy to get wrong!



Smart Pointers

• C++ 2011 (and beyond) has smart pointers to help address this
• A smart pointer is a container that holds a single raw pointer
• Uses RAI to ensure that the raw pointers are deallocated 

appropriately and without leakage
• Frees the programmer from worrying so much about this issue and 

improves program reliability

You Still Have to Use Them Properly!



Unique Pointers

• A unique pointer has exclusive access to a dynamically allocated 
object
• No other pointer of any kind points at the object!

// All smart pointers require this header
#include <memory>

// Declare p as a unique_ptr that wraps around the raw pointer returned by new.
std::unique_ptr<int> p{ new int{ 42 } };

*p = 84;   // Overloaded operators make using the unique_ptr natural.

// No explicit deallocation needed. 
// The destructor of unique_ptr takes care of that.



Library Helper

• Starting with C++ 2014, the preferred way to create a unique_ptr is with the 
helper function template std::make_unique

• The ability of std::make_unique to take a variable number of parameters of 
various types is because of a C++ 2011 feature called variadic templates

// Using ‘auto’ removes the need to type the (obvious) type of ‘p’
auto p1 = std::make_unique<int>( 42 );

// std::make_unique takes arguments that are passed to the constructor
auto p2 = std::make_unique<std::string>( ‘x’, 1024 );
    // Create a dynamically allocated string consisting of 1024 ‘x’ characters



No Copying

• Unique pointers cannot be copied!
• Doing so would result in two pointers that point at the same object, 

completely negating the purpose of unique pointers!

• Isn’t that limiting?
• Yes, it is. However, we haven’t met std::shared_ptr yet. J

• Unique pointers can, however, be moved
• Transfers ownership to the destination of the move
• The original owner no longer tries to delete the object; it is considered empty
• A default constructed std::unique_ptr is also in an empty state



Examples
auto p1 = std::make_unique<int>( 42 );
std::unique_ptr<int> p2;   // Default constructor creates an empty unique pointer

p2 = p1;   // Compile error! Copying not supported.

// Transfer ownership to p2.
// The destructor of p1 will no longer delete the object
p2 = std::move( p1 );



Unique Pointers and Functions

• Unique pointers can be returned from functions
• The return value is moved

• Unique pointers can be passed into functions
• … using std::move
• ... or by reference

• This means ownership of an object can be passed into a function and 
returned from a function in a (mostly) natural way



Traditional Binary Tree Nodes
template<typename T>
struct TreeNode {
    T data;
    TreeNode *left;
    TreeNode *right;
};

// Recursively crawl over the tree, deleting the nodes.
void destroy_tree( TreeNode *node );



Binary Tree Nodes with Unique Pointer
template<typename T>
struct TreeNode {
    T data;
    std::unique_ptr<TreeNode> left;
    std::unique_ptr<TreeNode> right;
};

// Destructor of TreeNode destroys ‘left’ and ‘right’
// That triggers the deletion of the child nodes, etc., recursively
delete root;



Release

• Sometimes you need to get the raw pointer back out of the unique 
pointer. Use the release method

auto p = std::make_unique<int>( 42 );

// Do things with p

int *pi = p.release( );  // p no longer owns the object.



Shared Pointers

• Multiple shared pointers can point at the same object…
• … but they track how many such pointers exist
• … and delete the object only when the last shared pointer disappears

• This means that a std::shared_ptr can be copied
auto p1 = std::make_shared<int>( 42 );

// The pointers p1 and p2 point at the same object.
// The object is deleted only when both p1 and p2 are destroyed.
std::shared_ptr<int> p2{ p1 };

// Prints 2 because two shared pointers are involved.
std::cout << p2.use_count( ) << std::endl;



More Compelling Example
std::vector<std::shared_ptr<int>> pVec;
std::list<std::shared_ptr<int>> pList;

auto p = std::make_shared<int>( 42 );

// Add pointers to the same object to two different containers
pVec.push_back( p );
pList.push_back( p );

// The objects get deleted only when both containers are destroyed



The Problem with Shared Pointers

• If each node contains a shared 
pointer to another node in a 
cycle…
• … destroying the shared pointer p

won’t delete any nodes…
• … because A still has another 

shared pointer that points at it

• The nodes A, B, and C can leak!
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Weak Pointers

• Replace the pointer in C with a 
std::weak_ptr
• Weak pointers don’t “own” the 

object to which they point and 
won’t delete it when they are 
destroyed
• This avoids a double delete of A

• Destroying p triggers removal of 
A, B, and C
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Weak Pointer Operations

• Weak pointers have very few operations
• You cannot access the object to which they point (without first converting 

them into a std::shared_ptr)
• This is surprising but makes sense… a std::weak_ptr might not actual be 

pointing at something (it might have been deleted). In such a case we say the 
std::weak_ptr has expired

• To convert a std::weak_ptr to a std::shared_ptr:
• Use the lock method (returns a shared pointer, which will be empty if the 

weak pointer is expired)
• Construct a shared pointer from the weak pointer (which throws an exception 

if the weak pointer is expired)



Creating Weak Pointers

• Shared pointers can be converted into weak pointers implicitly…
• … by way of assignment to a weak pointer…
• … or constructing a weak pointer from a shared pointer

• Shared pointers can be dereferenced like ordinary pointers (with the 
same operators), but weak pointers must be “locked” (i.e., converted 
to a shared pointer) before they can be used to access the target 
object


