
Standard Template Library
CIS-3012, C++ Programming

Vermont State University
Peter Chapin

C++ Standard Library

• Every compiler is required by the standard to include a library
• The standard library includes features for doing I/O, math, string

manipulation, regular expressions, and many other things.

• In C++ most of the standard library is templates
• That portion is called the Standard Template Library (STL).

• The STL is maybe 80% of the standard library?
• What is and is not part of the STL is informal. The standard doesn’t talk about

the STL, per se. However, people do.

Three Main Parts of the STL (pre-2020)

Containers AlgorithmsIterators

Class templates for class
that hold other objects

Function templates for
functions that implement
various algorithms

A means to specify which
subset of objects is to be
operated on by an algorithm

Sequence Containers
Name Description
std::vector<T> An array-like collection of T that has a fully dynamic size. It provides high speed

random access but O(n) insertion and erasure.
std::deque<T> Like vector except with high-speed access to both ends (deque stands for

double-ended queue and is pronounced “deck”).
std::list<T> A doubly-linked list with highly efficient insertion and erasure, but O(n) random

access. There are also high-speed splicing methods.
std::forward_list<T> A singly-linked list which is more limited than list, but also uses less memory

per item. This can be important in constrained systems.

Associative Containers
Name Description
std::set<K> A collection of keys where the keys are stored in sorted order. Normally sets are

implemented as Red-Black trees, although that is not formally required.
std::multiset<K> A collection of keys where the keys are stored in sorted order. Multisets differ

from ordinary sets in that they allow multiple, equivalent keys.
std::map<K, V> A collection of (key, value) pairs stored in key-sorted order. Normally maps are

implemented as Red-Black trees of pairs, although that is not formally required.
std::multimap<K, V> A collection of (key, value) pairs stored in key-sorted order. Multimaps differ

from ordinary maps in that they allow multiple, equivalent keys (with possibly
different corresponding values).

Unordered Associative Containers
Name Description
std::unordered_set<K> A collection of keys where the keys are typically stored in a hash

table. Hashing can be faster in some situations, but not others.
std::unordered_multiset<K> Similar in concept to multiset, except using hash tables.
std::unordered_map<K, V> A collection of (key, value) pairs where the keys are typically

stored in a hash table.

std::unordered_multimap<K, V> Similar in concept to multimap, except using hash tables.

Container Adaptors

• Container adaptors are not containers themselves
• Instead, they wrap an existing container

• However, they have defaults so they can be used easily
• For example, stack<T> wraps a deque<T> by default.
• You can wrap a different kind of container if you have the need.

Name Description
std::queue<T> A container for storing items in FIFO order.
std::priority_queue<T> Like a queue except items are retrieved in priority order.
std::stack<T> A container for storing items in LIFO order.

Container Adapters in Action

#include <list>
#include <stack>

stack<int> my_stack1; // Uses deque<int> internally (default).
my_stack1.push(42); // Push onto the stack.
int top_item = my_stack1.top(); // Get a copy of top item.
my_stack1.pop(); // Remove top item.

stack<int, list<int>> my_stack2; // Uses list<int> internally.
// etc., same as above.

Iterators

• An iterator is a pointer-like object…
• … in the sense that it supports similar operations as do pointers.

• Iterator is not a type!
• Every container has a separate iterator type that can be used to

“point into” that container…
• … and thus access the elements of that container.

• Every container has begin and end methods
• begin() returns an iterator that points at the first element
• end() returns an iterator that points just past the last element

Example: Vector Iterators
#include <vector>

vector<int> vec = { 2, 3, 5, 7, 11, 13, 17, 19 };

vector<int>::iterator it = vec.begin();
cout << *it << endl; // Prints 2
cout << *(it + 3) << endl; // Prints 7; vector iterators allow pointer-like arithmetic
++it; // Vector iterators allow pointer-like increment
cout << *it << endl; // Prints 3

it = vec.end();
cout << *it << endl; // UNDEFINED! The end iterator points off the end!
--it;
cout << *it << endl; // Prints 19

Iterator Types
#include <list>
#include <vector>

vector<int> vec = { 2, 3, 5, 7, 11, 13, 17, 19 };
vector<double> dvec = { 3.14, 2.78, 1.62 };
list<int> lst = { 2, 3, 5, 7, 11, 13, 17, 19 };

vector<int>::iterator it_1 = vec.begin();
vector<double>::iterator it_2 = dvec.begin();
list<int>::iterator. it_3 = lst.begin();

it_1 = it_2; // Error! Type mismatch!
 // vector<double>::iterator is a different type than vector<int>::iterator.

it_1 = it_3; // Error! Type mismatch!
 // list<int>::iterator is a different type than vector<int>::iterator.

Iterator Categories
• In this diagram, the arrows point in the direction of increasing

capability. This is not a UML class diagram! Iterator categories are not
types!

Random Access

Bidirectional

Forward

OutputInput

Random Access Iterators

• Operations:
• Increment and decrement
• All six relational operators (it_1 < it_2 is a sensible expression)
• Pointer arithmetic (it_1 + 10 is a sensible expression)
• Multi-pass (can pass over collection multiple times)

• Provided By:
• Vector
• Deque

Bidirectional Iterators

• Operations:
• Increment and decrement
• Only == and != supported
• No pointer arithmetic
• Multi-pass (can pass over collection multiple times)

• Provided By:
• List
• Set/Multiset
• Map/Multimap

Forward Iterators

• Operations:
• Increment only
• Only == and != supported
• No pointer arithmetic
• Multi-pass (can pass over collection multiple times), but only one way

• Provided By:
• Forward List
• Unordered Set/Multiset
• Unordered Map/Multimap

Input/Output Iterators

• Operations:
• Increment only
• Only == and != supported
• No pointer arithmetic
• Single-pass (can only pass over collection once)
• Input Iterators provide read-only access to collection elements
• Output Iterators provide write-only access to collection elements

• Provided By:
• Istreams (input)
• Ostreams (output)

Pointers?

• Ordinary pointers have all the operations of random access iterators
• Thus, pointers are a kind of iterator
• This unifies pointers (and therefor arrays) with the other containers in the

standard template library.
• That is, an ordinary C-style array is a kind of container and can be treated

largely the same way as the other containers.

#include <iterator>

int array[128];

int *p1 = std::begin(array); // Points at the first element.
int *p2 = std::end(array); // Points just past the last element.
 // std::begin and std::end can also be used with the STL containers.

Iterators and Range-Based For Loops
vector<int> my_vector = { … };
for(int x : my_vector) { … }

list<int> my_list = { … };
for(int x : my_list) { … }

set<int> my_set = { … };
for(int x : my_set) { … }

string my_string = … ;
for(char x : my_string) { … }

int my_array[128] = { … };
for(int x : my_array) { … }

// Any container type that provides appropriate iterators can be used this way.
// Including your own classes!

Algorithms!

