
Life Cycle Methods
CIS-3012, C++ Programming

Vermont State University
Peter Chapin

External Resources

• Many classes manages resources that exist outside the class objects
themselves…
• … memory is the most common such resource, but…
• … open file handles…
• … open network connections…
• … handles to graphical contexts…
• … open hardware devices (serial ports, printers, etc.)…
• There are other examples.

Garbage Collection

• Many languages automatically reclaim dynamically allocated memory
that can no longer be reached or used.
• The runtime system (i.e., “garbage collector”) automatically locates and

recycles that unreachable memory (i.e., “garbage”).

• C++ implementations typically do not include garbage collectors.
• (In theory they could, and some do, but it is rare).

• Garbage collection is great, but there are two problems with it…

Problems with Garbage Collection

• It greatly complicates the runtime system.
• For example, in Java garbage collection is done by the Java Virtual Machine,

which is a huge body of software.
• For some small-scale, highly constrained embedded devices, there just aren’t

the resources (memory, processor power) to run a garbage collector.

• Classic garbage collection is great for memory, but it does nothing
about all the other resources the program is using!
• You might not be leaking memory, but are you leaking open file handles??
• Some programming languages have glued-on features to deal with this.
• C++ has a comprehensive solution.

The Destructor

• A class’s destructor is a method that releases any external resources
held by the object.
• It is automatically called by the compiler when appropriate.
• … when a local variable disappears at the end of its scope.
• … when a function parameter disappears when a function returns.
• … when a global variable disappears when the program ends.

• It is possible, but exceedingly rare to call the destructor manually.

Class BigInteger

class BigInteger {

 // The default constructor.
 BigInteger();

 // The destructor.
 ~BigInteger();

};

In general, there can be many constructors with various parameters

There is only one destructor, and it is always parameter-less

Destructor Definition

BigInteger::~BigInteger()
{
 delete [] digits;
}

Release the dynamically allocated array

No return type, like constructors

No parameters

Invariants?

• Since the destructor is only called (by the compiler) when the object
is disappearing, it need not leave the object in a sensible state.
• Destructors only must worry about releasing external resources.
• It is okay for invariants to be violated.
• It is impossible difficult to even access an object after destruction.

Constant-ness?

• During construction, the members of a const object are not
considered to be const.
• Objects are changing during their initialization even if they are ultimately

constants after that point.

• Also… during destruction, the members of a const object are again
not considered to be const.
• Even constant objects need to have their resources released!

Resource Management

• Objects acquire resources during construction
• … or during their lifetimes.

• Objects release resource during destruction.
• Examples:
• Allocate memory in constructor / free memory in destructor.
• Open file in constructor / close file in destructor.
• Connect to server in constructor / disconnect from server in destructor.
• Configure serial port in constructor / restore port to original configuration in

destructor.
• Open window in constructor / close window in destructor.

Exceptions and Destructors
void f()
{
 string some_string{ etc };
 …
 bad_thing();
 …
} The function bad_thing() throws an exception…

The dynamic memory held by some_string is still reclaimed!

Exceptions and Destructors

• When an exception propagates to the callers…
• The destructors of all fully constructed local objects in each abandoned

context are automatically called.

• Thus, as an exception unwinds the call stack looking for a handler…
• Memory is automatically reclaimed…
• Files are automatically closed…
• Network connections are automatically disconnected…
• Hardware configurations are automatically restored…

• All provided you write destructors appropriately!

RAI

• Resource Acquisition is Initialization
• An idiom whereby resources are acquired in constructors (during

initialization)
• … and then released in destructors.

• RAI is extremely common in C++ class design. You will see it
everywhere.
• This is why you don’t have to worry about deallocating the memory held by
std::string objects or std::vector objects. Their destructors do it.
• It is also used for locking in multi-threaded applications (constructor acquires

lock, destructor releases lock… even when an exception is thrown).
• It is used by iostreams to ensure files always get closed.

What About Copying?

size_t digit_count;
storage_type *digits;

Storage Area

Dynamically allocated space on the heap for the digits

BigInteger Object

Copying the object creates two objects that point at the same storage!

The Problem With Copying

size_t digit_count;
storage_type *digits;

Storage Area

size_t digit_count;
storage_type *digits;

• Changes to one object are seen by the
other. This violates expected value semantics.

• If one object reallocates, the other object
can’t find the new allocation.

• If one object deletes the allocation (i.e.,
is destroyed), the other object is left
pointing at unallocated memory.

Copy Management

• Normally these are automatically generated by the compiler.
• You can define them yourself to “do the right thing.”
• Why two?
• The copy constructor is used to initialize an object with a copy of other.
• The copy-assignment operator is used to assign a copy of other to an

already existing (and already initialized) object.

// Copy constructor
BigInteger(const BigInteger &other);

// Copy-assignment operator
BigInteger &operator=(const BigInteger &other);

Copy Constructor

• The copy constructor is an ordinary constructor that can be called
using a single argument of the class.
• So, additional parameters with default values would be okay.

• It is used automatically by the compiler whenever you try to initialize
an object by copying some other object of the same type.
• In declarations: BigInteger x; BigInteger y{ x };
• When passing a function argument by value: void f(BigInteger
value); f(x). Notice here that f is declared as taking a BigInteger
by value, not by reference (as might often be the case).
• When returning from a function: BigInteger g(); x = y + g().

The return value is copy-constructed to a temporary that is added to y.

BigInteger Copy Constructor

BigInteger::BigInteger(const BigInteger &other)
{
 // Allocate a new storage area to hold the copy of the digits.
 digits = new storage_type[other.digit_count];

 // Copy the digits from the other object using C’s memcpy for speed.
 memcpy(digits, other.digits, other.digit_count * sizeof(storage_type));

 // Don’t forget to make a copy of the other object’s digit count!
 digit_count = other.digit_count;
}

This implementation isn’t quite right because it doesn’t deal with the case when other is zero
I’m ignoring that for now to avoid distraction

Copy-Assignment: Why?

• If copy constructors can copy, why do we need a separate copy
assignment operator?
• Initialization and assignment are not the same!
• Initialization gives an object its first value.
• Assignment overwrites an existing value with a new value.

• Thus…
• When doing copy construction, there is no need to clean up the target object.
• When doing assignment there is such a need.
• Assignment is somewhat like destruction + copy construction…
• … the compiler does not automatically generate that, however!

Initialization vs Assignment
• People are sometimes confused about the distinction because for

simple types there is no effective difference.
• Also, in languages that only handle complicated types by reference (e.g.,

Java), the matter doesn’t come up because the references themselves are
simple.

int x;
…
x = 42;

int x = 42;

int x{ 42 };

“default construct” x
(which does nothing for type int)

Assign to x. The old value is removed
by simply overwriting it with the new
value.

“copy construct” x
(there is no ”old value” to remove.

Same as above using uniform initialization syntax

Initialization vs Assignment

• For complicated types, there is a big difference!

BigInteger x;
…
x = 42;

BigInteger x{ 42 };

Default construct x
(which is non-trivial)

Copy construct x. Storage is allocated
To hold a copy of the initializer.
(there is no ”old value” to remove.

Assign to x. This first requires that
the storage previously allocated for
x be removed. Then, new storage is
allocated for the copy. Initialization is potentially faster!

This is because there is no need to clean up the target object first
… and no need to execute a pointless default constructor.

C++ Allows Declarations Anywhere

• This is not just a convenience feature.
• BP: Always initialize (i.e., call an appropriate constructor on) an object when it

is declared. Instead of declaring it first and assigning to it later.
• If you don’t know the initializer (i.e., constructor arguments) yet, move the

declaration to a place where you do.
• Consider declaring the object const if possible.

• This is normal for functional languages where objects are all
immutable and can’t be assigned a value after initialization (i.e.,
construction).
• There are places where exceptions to this idea are appropriate.

BigInteger Copy-Assignment Operator (v1)
BigInteger &BigInteger::operator=(const BigInteger &other)
{
 // Clean up target object (*this).
 delete [] digits;

 // Copy `other` value.
 digits = new storage_type[other.digit_count];
 memcpy(digits, other.digits, other.digit_count * sizeof(storage_type));
 digit_count = other.digit_count;

 // Return a reference to the target object.
 return *this;
}

This implementation has some problems
(other than the fact that it also doesn’t handle zero properly)

Problem #1: Exception Safety

• If an exception is thrown during the execution of a method, in what
state will that leave the object?
• Strong Safety: The object retains its original value and continues to work

properly. Any effect the method had before the exception is thrown is undone.
• Basic Safety: The object’s value may have been changed, but the object

continues to work properly (all invariants remain satisfied).
• No Safety: The object is corrupted and unusable. However, the object remains

destructible (meaning, the destructor will execute without crashing and
recover all resources as usual)
• There Be Dragons: The object is no longer destructible. Do not go there!!

Evaluating Exception Safety

• First… which operations in the method might throw?
• For BigInteger’s copy-assignment operator (v1)…
• … the only operation that might throw is the dynamic memory allocation.
• It might throw std::bad_alloc if there is insufficient memory.

• Now, suppose it does throw. Where does that leave the object?
• The digits array has just been deleted (deallocated)
• The digit_count member continues to have its original value.
• The invariant is violated!

• It’s worse
• The object is not destructible! The digits array will be double-deleted.

BigInteger Copy-Assignment Operator (v2)
BigInteger &BigInteger::operator=(const BigInteger &other)
{
 // Try the allocation first. If this throws there is no other effect.
 storage_type *temp = new storage_type[other.digit_count];

 // Nothing below this point can throw.

 // Clean up target object (*this).
 delete [] digits;

 // Copy `other` value.
 digits = temp;
 memcpy(digits, other.digits, other.digit_count * sizeof(storage_type));
 digit_count = other.digit_count;

 // Return a reference to the target object.
 return *this;
}

Exception Safety?

• In version 2, the allocation (that might throw) is done first.
• If an exception is thrown, the object is unchanged: we have strong exception

safety!

• The downside:
• For a short time, we need enough memory to make a copy of the other

object’s digits while at the same time hold on to the memory for the target
object’s digits.
• Thus, the exception safety has memory costs
• No big deal if the numbers have only a few digits. What if they have billions?

• Conclusion: You can’t have it all!

Problem #2: Self-Assignment

• Normally the copy-assignment operator needs to protect itself from
the possibility that an object is being assigned to itself.
• The BigInteger copy-assignment operator v1 fails spectacularly in that

case.
• It deletes digits before it copies other.digits. If other is the same

object, it will be trying to copy a deleted array.

• What about v2?
• Hint: It has the same problem.

• We could rearrange the code to deal with this too, but first… why
should we even care about this?

Self-Assignment

• Self-assignment looks like this (for integers):

• Here is a more compelling example:

int x;
int *p = &x; // p points at x
…
x = *p; // Assigns x to itself.

int array[128];
…
// Copy element at position k to every array location.
for(int i = 0; i < 128; ++i) {
 array[i] = array[k]; // When i == k this assigns array[k] to itself.
}

BigInteger Copy-Assignment Operator (v3)
BigInteger &BigInteger::operator=(const BigInteger &other)
{
 // Boiler plate for avoiding self-assignment.
 if(this != &other) {

 storage_type *temp = new storage_type[other.digit_count];

 // Clean up target object (*this).
 delete [] digits;

 // Copy `other` value.
 digits = temp;
 memcpy(digits, other.digits, other.digit_count * sizeof(storage_type));
 digit_count = other.digit_count;
 }
 return *this;
}

return *this??

• In C and C++, assignment is an operator, and we have assignment
expressions.
• This is unusual. In many languages assignment is a statement form.

• C has what are called expression statements that are made by adding
a semicolon to the end of an expression.
• Most languages don’t do this unless they are based on C semantics.

int x, y, z;

x + y; // Legal. An expression statement from an add expr.
z = x + y; // Legal. An expression statement from an assignment expr.

Say What?

• Consider:
• x + y; is a valid statement, but it has no effect since addition changes

neither operand and nothing is done with the result.
• x = y; is a valid statement, bit it does have an effect since assignment

changes its left operand.
• In any event, = is an operator in C/C++ and, in C++, it can be overloaded.

• Assignment normally returns the left operand after the assignment
(and any implicit type conversions) has happened.
• Thus: x = y + (a = b); is legal. It puts the value of b into a, returning

the new a (i.e., the value of b after implicit type conversions), adds that result
to y and puts the final answer into x.

Is It Useful?

• Sometimes
• One semi-common usage is to chain assignments

• Because assignment associates from right to left, the above is the same as

This has the effect of assigning zero to z. Then since z = 0 returns 0, that
zero gets assigned to y, etc. You might want to do this with your own classes
too!

int x, y, z;
x = y = z = 0;

int x, y, z;
x = (y = (z = 0));

User-Defined Copy-Assignment

• You could declare your operator=() to return void.
• Most of the time nobody would notice and it’s less quirky.
• But it will prevent chaining assignments.

• Thus, it is normal to declare operator=() to return a reference to
the class (BigInteger &).
• Then, as the last statement of the implementation:
• return *this;

Copy Construction vs Copy-Assignment

• Copy constructors are much simpler than copy-assignment operators.
• There is no existing value to clean up.
• Exception safety is easier

• No existing value to worry about preserving.
• No need to maintain invariants or destructibility because the destructor will not run on

objects that fail to construct*. Also, such objects are impossible difficult to access so the
programmer can’t touch/use them.

• No need to worry about self-assignment
• Constructors don’t return anything, so the return type is not relevant

• The copy constructor is likely faster and/or consumes fewer resources
• Initialize objects when they are declared. Avoid assigning to objects!

* If you throw in a constructor, be sure to release resources already acquired before the throw!

The Triad (Life Cycle Methods)

• The following three methods go together:

• If you have one, you probably need all three.
• Some compilers will warn if you are missing one or two.

• Classes that manage external resources need…
• … a destructor to release those resources AND
• ... a copy constructor and copy assignment operator to manage copying those

resources.

~BigInteger()
 BigInteger(const BigInteger &other);
 BigInteger &operator=(const BigInteger &other);

I Don’t Want To Copy

• Certain classes don’t make sense to copy.
• The std::thread class manages a thread of execution. What would it even

mean to copy an executing thread?

• However, if you don’t define your own copy constructor and copy-
assignment operator, the compiler will generate one that copy
(constructs/assigns) the members.
• You can suppress this:

BigInteger(const BigInteger &other) = delete;
BigInteger &operator=(const BigInteger &other) = delete;

Deleting the methods tells the compiler to not generate them.
Also, you don’t implement them.
Attempts to copy objects become compile-time errors.

But Wait! There’s move... er… more!

• FINISH ME!

