
C++ Exceptions
Peter Chapin

CIS-3012, C++ Programming
Vermont State University

Reporting Errors

• Traditionally (i.e., in C) errors are reported by returning “funny
values”

• In the code above, ch must be int because EOF is outside the range
of all possible characters. Many programs get this wrong!

int ch;

ch = getc(in_file);
if(ch == EOF) {
 // No more data (“end-of-file”), or error.
 // Note that EOF could mean an error occurred (use ferror(in_file) to check)
}

This Requires Handing Back Error Codes

• For example: • Every call of f must be checked
for an error code.
• If f fails, then g has failed, so…
• … (possibly different) error codes

must be handed back from g
• Error codes must be propagated

manually up the call chain

int f() {
 int rc = NO_ERROR;
 if (error_detected) { rc = ERROR; }
 else { … }
 return rc;
}

int g() {
 int rc = NO_ERROR;
 if(f() == ERROR) { rc = ERROR; }
 else { … }
 return rc;
}

The Big Picture

• In general, the place where an error is detected does not know how
to handle that error
• Error detected in a general-purpose, third-party library does not know the

application’s requirements

• Instead, information about the error must be propagated back on the
call chain to where it can be handled
• At a higher level in the program’s logic, the context of the error is better

understood, so decisions about handling can be done there

What’s Wrong?

• Propagating error codes is tedious
• Many programmers don’t bother to check for them, resulting in programs

that behave poorly when an error occurs
• It doesn’t help that some errors are very rare (semi-justifying the lack of a

check)

• It clutters the main logic
• Programs are harder to read when error handling logic is mingled with

“normal” program flow

• It’s complicated to propagate non-trivial information
• Returning a single integer is easy. What if more information was needed?

Enter Exceptions

• For example: • When an error is detected,
throw an exception object (of
any type)
• Exception object propagates

automatically (by the runtime
system)
• High level function installs

handler with try/catch
construct

void f() {
 if (error_detected) { throw 42; }
 return;
}

void g() {
 f(); // Call f and ignore error
}

void h() {
 try {
 g();
 }
 catch(int error_code) { ... }
}

Exceptions…

• … are intended to propagate error information across long distances
• That is, over several layers of calls
• If you find yourself throwing an exception and then catching it immediately (a

couple of lines later), something is wrong

• … are intended to de-clutter program logic by pushing error handling
to the side
• Try to put exception handlers at the bottom of the functions that have them
• You don’t want to look at error handling when trying to understand the basic

operation of a function

Overhead?

• In C++ throwing an exception is expensive (i.e., time consuming)
• Compilers optimize the “main line” where an exception is not thrown

• The runtime system unwinds the program stack looking for the right
handler, calling destructors as it goes, etc.
• Thus, there can be a long delay between a throw and when the handler starts

executing.

• Only Use Exceptions For Exceptional Things
• Errors that “cannot happen” (assuming your program is right)
• Unusual errors that rarely happen

Overused?

• Many programs (especially in other languages) overuse exceptions
• Sometimes this is the fault of the programmer
• Often it is the fault of the language or library being used, requiring exceptions

when it doesn’t make sense to use them.

• The C++ community has considered these questions careful

Poster Child: Failure to Open a File

• It is normally better to report failure to open a file by returning an
error code and not by way of exception
• Failure to open a file is not exceptional. It happens all the time, e.g., when the

file does not exist
• Handling such a failure is often a local matter, so propagating error

information over a long distance isn’t needed, manipulating error codes is
fine
• If necessary, the error code can be translated into an exception:

std::ifstream input_file{ “config.txt” };
if(!input_file)
 throw BadConfiguration(“missing configuration file”);

Any Type?

• In C++, exception objects can be any type
• Primitive, scalar types: integers, characters, floating point numbers
• Pointer types (e.g., pointing at a complex, dynamically allocated object)
• Class types (e.g., standard library strings, vectors, maps, etc.)
• Class types (e.g., classes of the programmer’s own design)

• Unlike Java, C++ exception types need not be derived from any
particular base class or be part of any particular class hierarchy
• Although the standard library provides a class hierarchy that can be used

• Exception types can use multiple inheritance for some special effects

Try Block Syntax
try {
 // If an exception is thrown by this code, examine the handlers below
}
catch(int ex) {
 // Handle a thrown integer. The exception object is named ex in this scope.
}
catch(const std::string &ex) {
 // Handle a thrown standard string
}
catch(const std::map<std::string, std::string> &ex) {
 // Handle a thrown map from strings to strings
}
catch(...) {
 // Handle everything else
}

More on Exception Syntax

• If no handlers match, the exception continues to propagate
• The handlers are checked in order, so if an earlier handler matches,

later handers won’t be considered
• This mostly matters when using OOP techniques

• The “catch all” handler must appear at the end if it is used at all
• Otherwise, no other handlers would ever be matched

• Catching by reference (to const) prevents the exception object from
being unnecessarily copied
• Giving a name to the exception object is optional

Finally?

• C++ try blocks do not have a finally clause as, for example, Java does
• The purpose of finally is to execute code either when the try block exits

normally OR when an exception is thrown.
• C++ uses destructors of classes (RAI) to do this

• When an exception propagates through a block, the destructors of all
fully constructed objects are executed
• … thus, resources are reclaimed regardless of if the code exits normally or

exits by way of an exception
• … provided all resource reclamation code is inside destructors
• Smart pointers are very helpful in this respect!

Multiple Threads?

• In a multi-threaded program, an exception thrown in one thread has
no impact on other threads
• Every thread as its own call stack. Only the stack being used by the throwing

thread is unwound.
• Even if the same handler code is executed simultaneously by two threads, it

doesn’t cause a problem because every thread has its own stack and its own
exception object

Simple Ideas

• Instead of returning an integer error code, why not throw the error
code (i.e., throw the integer instead of returning it)?
• Useful if the handler is “far away” from the point where the error is detected

• Throw a human-readable string containing an error message
• Useful to humans, less useful to other parts of the program unless the string

encodes relevant data about the exception in an easy-to-parse way

• Throw a structure containing information about the error so the
handler has all the information it needs to fully handle the problem

Example (In General Purpose Library)
struct ConfigError {
 std::string file_name;
 FileCoordinates file_coordinates;
 std::string config_key;
 std::string config_value;
};

// Throw an instance of the structure initialized as indicated.
// Here we are reporting a problem on line 10, column 43 of “config.txt”: the
// key SILLY_KEY has a bad value: 1.0.
//
// Note the explicit constructor call for class FileCoordinates.

throw ConfigError{ “config.txt”, FileCoordinates(10, 43), “SILLY_KEY”, “1.0” };

Now, The Handler (In Application Code)
catch(const ConfigError &ex) {
 // Ignore errors in SILLY_KEY
 if(ex.config_key != “SILLY_KEY”) {
 ostringstream formatter;
 formatter << “FILE: ” << ex.file_name
 formatter << “, LINE: ” << ex.file_coordinates.line
 formatter << “, COLUMN: ” << ex.file_coordinates.column
 DialogBox(window_handle, formatter.str().c_str(), DLG_ALERT, DLG_OK);
 }
}

Exceptions and Inheritance

// First, we define an inheritance hierarchy

// For brevity, I elide the contents of these classes.
// In a real application they would have interesting constructors and internals

class Animal { … }
class Reptile : public Animal { … }
class Mammal : public Animal { … }
class Cat : public Mammal { … }
class Dog : public Mammal { … }

Exceptions and Inheritance
// Examples of handlers

catch(const Cat &ex) {
 // Handle thrown cats
}
catch(const Reptile &ex) {
 // Handle thrown reptiles of any kind
 // Meaning all classes derived from Reptile
 // Calling virtual methods on ex will dispatch in the usual way
}
catch(const Animal &ex) {
 // Handle all remaining animals
 ex.make_noise(); // Bark? Squeal? Trumpet? Cluck?
}

Exceptions and Inheritance

// A more compelling example

class NetworkError { … }
class ClientError : public NetworkError { … }
class ServerError : public NetworkError { … }
class AddressError : public NetworkError { … }
class IPv4AddressError : public AddressError { … }
class IPv6AddressError : public AddressError { … }

Standard Exceptions

• The standard library has a hierarchy of exceptions already
• It is widely used, but optional
• You can hook into the standard hierarchy by deriving your exception

classes from it
• This allows code that catches the standard classes to also catch your

exceptions without knowing anything about your exceptions

Meet The Family

• #include <stdexcept>
namespace std {
 class exception { … };
 class logic_error : public exception { … };
 class domain_error : public logic_error { … };
 class invalid_argument : public logic_error { … };
 class length_error : public logic_error { … };
 class out_of_range : public logic_error { … };
 class runtime_error : public exception { … };
 class range_error. : public runtime_error { … };
 class overflow_error : public runtime_error { … };
 class underflow_error : public runtime_error { … };
}

What?

• All the standard exception classes have a constructor taking a
reference to a const std::string
• All the standard exception classes have a what method that returns

that string (as a const char *)
• The intent is for this string to contain a (potentially) human-readable

message describing the exception
• It could also be used to encode other information if desired

Logic vs Runtime

• A logic error is an error in the program itself. In theory they can be
prevented by the programmer.
• In other words, a logic error is a program bug that was detected by the

program as it runs

• A runtime error is an error that arises from the environment in which
the program executes. It is not the program’s fault.
• It could be argued that runtime errors should not be reported as exceptions

at all, but if the error is obscure enough it might still make sense to use an
exception

Logic Errors

• domain_error
• An argument to a function is outside the function’s domain (e.g., negative

values to a square root function)
• invalid_argument
• An argument to a function is invalid. Similar to domain_error, except used

for non-mathematical functions (e.g., bad string format)
• length_error
• To “report an attempt to produce an object whose length exceeds its

maximum allowable size.”
• out_of_range
• To “report an argument value not in its expected range.”

Runtime Errors

• range_error
• To “report range errors in internal computations.” Here range is used in a set-

theoretic way to mean the computed result of a function is not in the allowed
set of possibilities, e.g., a string can’t be made with the right format

• overflow_error
• To “report an arithmetic overflow error.” Although an arithmetic overflow is a

kind of range error, this exception is intended to be used when numeric
computations go beyond the allowed range of their type

• underflow_error
• To “report an arithmetic underflow error.”

Example

• An exception to throw if a function/method is not implemented:

• Derived from logic_error since calling an unimplemented function is a bug
• Constructor takes a message string that is used to initialize the base class,

becoming the what message for the exception object
• No other data members or methods in this example. There could be others!

class NotImplemented : public std::logic_error {
public:
 explicit NotImplemented(const std::string &message) :
 std::logic_error(message)
 { }
};

throw NotImplemented(“f(int, const string &) not implemented”);

Other Standard Exceptions

• The C++ standard defines other exceptions derived from
std::exception for various special purposes. For example:
• std::bad_alloc is thrown when new fails to find memory
• This is rare: virtual memory means programs don’t usually run out
• … and if they do, the OS will have bigger problems!

• The bad_alloc exception can still be thrown when…
• … you are programming for a highly constrained (embedded) system without

virtual memory support
• … the process has a resource quota imposed on it that limits its memory

usage

Exception Specifications?

• Java allows you to declare which exceptions a method might throw
• Compiler verifies (statically) that all declared exceptions of called methods are

either handled or declared to be thrown
• The idea was to ensure that no exceptions will go unnoticed/unhandled

• Problems:
• Not all exceptions are “checked”, and they can be thrown even without the

specification. Thus, the feature doesn’t really guarantee that there are no
unhandled exceptions
• Sometimes, because of the logic of your program, you know an exception

won’t be thrown, yet you are forced to handle an exception that can’t happen
or declare that you will throw an exception you never will

Controversial

• For the reasons stated earlier, Java exception specifications are
controversial
• Some believe they are a mistake in the design of Java
• Some believe they are useful tools to help make more reliable programs
• Perhaps both are right?

• Most modern languages do not have exception specifications
• For example, Scala does not, despite targeting the JVM

What about C++?

• C++ 1998 had a form of exception specifications
• It was even more controversial than Java’s
• It did not provide much help with creating more reliable programs
• C++ needed to be compatible with legacy (pre-1998) code and with C, which

limited the design options for exception specifications

• It basically didn’t work, and it caused more problems than it solved
• A “best practice” quickly arrived: Don’t Use Exception Specifications!
• Deprecated in C++ 2011. Completely removed in C++ 2017
• A rare case of the language actually getting smaller! (*gasp*)

With One (um) Exception…

• General exception specifications have questionable utility…
• … but it is useful to know if any exceptions will be thrown at all
• C++ 2011 (and beyond) allows you to declare noexcept functions

void swap_ints(int &x, int &y) noexcept
{
 int temp = x;
 x = y;
 y = temp;
}

A promise that this function will not throw

Copying integers does not throw. Promise kept!

What’s the Point?

• Better documentation. To evaluate exception safety, you need to
know what does not throw
• Expressions involving primitive types
• (Raw) pointer manipulation
• Accessing memory (might cause UB, i.e., out-of-bounds access)
• Calling any function marked as noexcept (tools can potentially help)

• Better optimization.
• Generating code to deal with exceptions is complicated for the compiler
• Functions not marked as noexcept are assumed to maybe throw
• Thus, noexcept makes it possible for the compiler to simplify the code

What If You Lie?

• For example:

• The program terminates at once!
• This might seem harsh, but…
• … the program is violating its contracts
• This is an internal matter; a bug to be caught during testing

• It is not a compile-time error!

void f() noexcept
{
 throw std::runtime_error(“BWHAHAHA!!”);
}

