
C++ Concurrent
Programming

Peter Chapin
CIS-3012, C++ Programming

Vermont State University

Thread?

• A thread of execution (or just thread) is the sequence of statements
executed by the processor (or processing element)
• In a single-threaded program, there is just one thread
• It calls main and follows the flow of the program until it exits, causing the

program to end

• In a multi-threaded program, there are multiple threads
• The main thread is the one that calls main
• During its lifetime, the main thread might start other threads
• Each additional thread calls a top-level function for that thread called the

thread function

Program Termination

• The program ends when the main thread returns from main
• This is true even if there are other threads active. They are aborted at once

• The program ends if any thread calls std::exit
• This is true even if there are other threads active. They are aborted at once

• The program ends if any thread throws an exception that it does not
handle
• This is true even if there are other threads active. They are aborted at once

• In general, it is best to arrange for the clean termination of all threads
before trying to terminate the program

Single-Threaded

• In a single-threaded process:
• The OS starts the main thread
• The main thread calls constructors of global objects
• The main thread calls main
• The program is executed
• The main thread returns from main
• The main thread calls destructors of global objects
• The main thread informs the OS that the process has ended

An exception here might skip the return from main.
However, the destructors of global objects still get called.

Multi-Threaded

• In a single-threaded process:
• The OS starts the main thread
• The main thread calls constructors of global objects
• The main thread calls main
• Additional threads get created by the main thread (or by each other)
• The program is executed
• Wait for all additional threads to cleanly terminate
• The main thread returns from main
• The main thread calls destructors of global objects
• The main thread informs the OS that the process has ended

Unhandled Exceptions

• Because an unhandled exception in a thread will terminate the entire
program, consider catching all exceptions in the thread function

// This function is the top-level function of some thread
void f(int x, int y)
{
 try {
 // The main logic of the thread
 }
 catch(...) {
 // The thread tried to throw an unhandled exception.
 // Log the event, and let the thread end normally?
 }
 // The thread ends when this function returns
}

Processor Stack

• Every thread has its own stack. This means:
• Local variables are unique to the thread, even if two threads execute the very

same function (local variables on on the stack)
• When an exception is thrown, it is the stack of the throwing thread that is

unwound
• An exception can be happening in one thread while other threads are

executing normally. This does not (necessarily) cause any problems
• The stack could overflow in one thread (causing UB), but not the others

Global Variables

• Local variables (and function parameters) are not shared between
threads, even when two threads execute the same function (every
thread has its own stack)
• Global variables are shared between threads
• Heap data is (potentially) shared between threads
• That is, objects allocated with new can potentially be accessed by multiple

threads, if pointers to such objects are shared

• Thread-local storage is global storage that is only visible to a
particular thread. Outside the scope of these slides

Debugging Multi-Threaded Programs

• Is hard!
• By default, most debuggers will stop only one thread. The other threads run

at full speed as you single-step through the program.
• You typically can stop all threads, and switch between them manually to

single step each one
• A breakpoint will likely stop the thread that hits it, but not the others,

although your debugger may give you the option to stop all threads when any
of them breaks

• Interpreting what is going on can be very difficult

Debugging Multi-Threaded Programs

• Is very hard!!
• Many thread related errors arise because of timing problems between the

threads (called race conditions)
• Unfortunately, thread timing is non-deterministic and extremely difficult (aka

impossible) to reproduce at will
• A problem that is reasonably reliable in the deployed system may go away

when you try to debug because of changes in thread timing
• Even adding a debugging print will change the relative execution speed of the

threads and can mask bugs

• Many multi-threaded programs are deployed with bugs like these!

What Does It Look Like?
// FILE: main.cpp

#include <thread>

extern void f(int x);

int main()
{
 // Start a thread, passing 42 to f
 std::thread t(f, 42);

 // Do other things while f executes

 // Wait for the thread to end
 t.join();
 return 0;
}

// FILE: helper.cpp

void f(int x)
{
 // Code executed by thread
}

If an exception is thrown, the call to join gets skipped.
That might be undesirable

Using C++ 2020 std::jthread
// FILE: main.cpp

#include <thread>

extern void f(int x);

int main()
{
 // Start a thread, passing 42 to f
 std::jthread t(f, 42);

 // Do other things while f executes
 return 0;
}

// FILE: helper.cpp

void f(int x)
{
 // Code executed by thread
}

The destructor of jthread calls join.
This will happen even if an exception propagates

Another Example
// FILE: main.cpp

#include <thread>

extern void f(int x, double y);

int main()
{
 // Start a thread, passing 42 to f
 std::thread t(f, 42, 3.14);

 // Do other things while f executes

 // Wait for the thread to end
 t.join();
 return 0;
}

// FILE: helper.cpp

void f(int x, double y)
{
 // Code executed by thread
}

Variable number of arguments of variable types
This works because the constructor is a variadic template

Finish Me!

• Topics to include:
• Returning values from threads
• The std::this_thread name space
• std::mutex
• Lock guards
• R/W locks
• Condition variables
• Futures and promises

