C++ Concurrent
Programming

Peter Chapin

CIS-3012, C++ Programming
Vermont State University



Thread?

* A thread of execution (or just thread) is the sequence of statements
executed by the processor (or processing element)

* In a single-threaded program, there is just one thread
* It calls main and follows the flow of the program until it exits, causing the
program to end
* In a multi-threaded program, there are multiple threads
 The main thread is the one that calls main
* During its lifetime, the main thread might start other threads

* Each additional thread calls a top-level function for that thread called the
thread function



Program Termination

* The program ends when the main thread returns from main
* This is true even if there are other threads active. They are aborted at once

* The program ends if any thread calls std::exit
* This is true even if there are other threads active. They are aborted at once

* The program ends if any thread throws an exception that it does not
handle

* This is true even if there are other threads active. They are aborted at once

* In general, it is best to arrange for the clean termination of all threads
before trying to terminate the program



Single-Threaded

* In a single-threaded process:
* The OS starts the main thread
* The main thread calls constructors of global objects
* The main thread calls main
* The program is executed <
* The main thread returns from main
* The main thread calls destructors of global objects
* The main thread informs the OS that the process has ended

An exception here might skip the return from main.
/ However, the destructors of global objects still get called.




Multi-Threaded

* In a single-threaded process:
* The OS starts the main thread
* The main thread calls constructors of global objects
 The main thread calls main
e Additional threads get created by the main thread (or by each other)
* The program is executed
* Wait for all additional threads to cleanly terminate
* The main thread returns from main
* The main thread calls destructors of global objects
* The main thread informs the OS that the process has ended



Unhandled Exceptions

* Because an unhandled exception in a thread will terminate the entire
program, consider catching all exceptions in the thread function

// This function is the top-level function of some thread
void f( int x, int y )
{

try {
// The main logic of the thread
}

catch( ... ) {
// The thread tried to throw an unhandled exception.

// Log the event, and let the thread end normally?
}

// The thread ends when this function returns



Processor Stack

* Every thread has its own stack. This means:

* Local variables are unique to the thread, even if two threads execute the very
same function (local variables on on the stack)

 When an exception is thrown, it is the stack of the throwing thread that is
unwound

* An exception can be happening in one thread while other threads are
executing normally. This does not (necessarily) cause any problems

e The stack could overflow in one thread (causing UB), but not the others




Global Variables

* Local variables (and function parameters) are not shared between
threads, even when two threads execute the same function (every
thread has its own stack)

 Global variables are shared between threads

* Heap data is (potentially) shared between threads
* That is, objects allocated with new can potentially be accessed by multiple
threads, if pointers to such objects are shared

* Thread-local storage is global storage that is only visible to a
particular thread. Outside the scope of these slides



Debugging Multi-Threaded Programs

* Is hard!
* By default, most debuggers will stop only one thread. The other threads run
at full speed as you single-step through the program.
* You typically can stop all threads, and switch between them manually to
single step each one

* A breakpoint will likely stop the thread that hits it, but not the others,
although your debugger may give you the option to stop all threads when any

of them breaks

* Interpreting what is going on can be very difficult



Debugging Multi-Threaded Programs

* Is very hard!!

 Many thread related errors arise because of timing problems between the
threads (called race conditions)

* Unfortunately, thread timing is non-deterministic and extremely difficult (aka
impossible) to reproduce at will

* A problem that is reasonably reliable in the deployed system may go away
when you try to debug because of changes in thread timing

* Even adding a debugging print will change the relative execution speed of the
threads and can mask bugs

* Many multi-threaded programs are deployed with bugs like these!



What Does It Look Like?

// FILE: main.cpp // FILE: helper.cpp

#include <thread> void f( int x )
{

extern void f( int x ); // Code executed by thread
}

int main( )

{
// Start a thread, passing 42 to f
std::thread t( f, 42 );

If an exception is thrown, the call to join gets skipped.

// Do other things while f executes . )
That might be undesirable

// Wait for the thread to end
t.join( );
return 0O;



Using C++ 2020 std: : jthread

// FILE: main.cpp

#include <thread>

extern void f( int x );

int main( )

{

// Start a thread, passing 42 to f
std::jthread t( f, 42 );

// Do other things while f executes «

return 0O;

// FILE: helper.cpp

void f( int x )
{

}

// Code executed by thread

The destructor of jthread calls join.
This will happen even if an exception propagates



Another Example

// FILE: main.cpp // FILE: helper.cpp

#include <thread> void f( int x, double y )
{

extern void f( int x, double y ); // Code executed by thread
}

int main( )

{

// Start a thread, passing 42 to f , _
std::thread t( f, 42, 3.14 ); <7Var|able number of arguments of variable types

This works because the constructor is a variadic template
// Do other things while f executes
// Wait for the thread to end

t.join( );
return 0O;



Finish Me!

* Topics to include:
e Returning values from threads
* The std: :this thread name space
std: :mutex
Lock guards
R/W locks
Condition variables
Futures and promises



