Biginteger

CIS-3012, C++ Programming
Vermont State University
Peter Chapin



The Problem With Bigintegerl

e Fixed maximum size

* All Biginteger objects hold exactly 128 decimal digits
e Can’t expand beyond that when needed
* Wastes memory for the (common) case when fewer digits are required

* Inefficient memory use

* Each decimal digit consumes an entire int (32 bits in most cases) despite only
containing log,(10) = 3.32 bits of information.



Dynamic Digits Array

* Biginteger2 will use a dynamically allocated array for the digits.
e Each object can allocate whatever space it needs... but no more.
* This allows object to hold potentially millions (billions!) of digits.
* But small numbers won’t waste space.

* Different Biglnteger objects will have different digit arrays...
... with (in general) different sizes.
* The size of the array is not part of the type.



What About std: :vector?

* Aren’t we supposed to use std: : vector instead of arrays?

* Yes!
* ... but managing the allocations ourselves is educational.

* It will help you understand how std: :vector, and many other classes, are
implemented.

* Biginteger4 will use vectors
* You will see a huge simplification!



Object Layout

Biginteger Object
Count to track how much space has been allocated

size t digit count;

storage type *digilts;

Storage Area

Pointer that points at the allocated space Dynamically allocated space on the heap for the digits

Notice that the Biglnteger object is only 16 bytes (on 64-bit architectures)... regardless of how many digits are stored!
Most of the Biginteger’s value is held externally to the object itself!



Now What?

e This is our first encounter with a class that holds most of its value
externally.

* There are many implications!
 How does the external data get released?
* How does the external data get copied?
* Isn’t it slow to copy potentially millions of bytes of data? How is that handled?

* Biginteger2 gives us a chance to address these questions

* Next up: Lifecycle Methods!
* See the relevant slide deck for information on these special methods.



BigInteger3: Base 234Digits

* Instead of using base 10, we’ll change to base 232
* That is, our “digits” will be 32-bit unsigned numbers.

* Every bit is significant!
* Very large values can be represented with a minimum number of total bits.
* For example: a 32-million-bit number will be stored as one million 32-bit

unsigned integers.
* Using a base which is a power of two...

* ... simplifies the math by allowing certain operations to be done as bit shifts
and masking (very fast).



Compute Type vs Storage Type

* Computations on digits require temporaries with twice as many bits.

* For example, in base 10, multiplying two 2-digit numbers yields a 4-digit
result: 99 * 99 = 9801.

e Similarly, multiplying two 32-bit numbers yields, in general, a 64-bit result.

* We will use two type aliases:

* storage type for holding a digit in memory (32 bits).
* compute type for holding temporary results of digit computation (64 bits).

* Using type aliases improves code readability and documentation and allows
us to modify their definition for different platforms.



What Platforms?

* First, who cares about arbitrary precision integers?

* A classic use-case is cryptography. Some cryptographic algorithms manipulate
(and do arithmetic on) values with thousands of bits (e.g., RSA, DSA, ECC).

e Will systems targeting microcontrollers ever want to use
cryptography?
* Yes!
* So, it makes sense to ensure our code will work correctly even on a 16-bit
processor. This requires attention to detail regarding the selection of integers

types.
* Hence the use of type aliases to make changes easy in the future.



