
MLModel Training
Peter Chapin

Vermont State University
CIS-2730, Software Engineering Projects



Goals

• Input Data
• Temperature readings were taken at various times of day
• The readings were taken at multiple locations in the Winooski Valley of 

Vermont.

• Predictive Output
• The temperature at locations other than where the readings were taken, 

but also in the Winooski Valley (interpolation)
• The temperature at times other than when the readings were taken

(interpolation)
• We are not interested in predicting temperatures outside the valley 

(extrapolation)



Approach

• We’ll use a model with 9 tunable parameters.
• Divide input data into (training, validation & test) sets
• We will normalize the input features to the range -1.0 to +1.0 (probably not 

necessary for longitude and latitude, but why not do it?)
• We will not use separate validation and test data

• Adjust the parameters using gradient descent with the training 
data.
• We will use an evaluation function of squared error (i.e., we will do a least-

squares fit)

• Check the model against the validation & test data.



Normalization

• Talk about normalization



Training, Validation, Test

• Talk about training, validation, and test data sets



The Model

• Many models are possible.
• Convolutional neural networks (CNNs) are good at dealing with spatially 

distributed information, such as recognizing pictures of cats.
• Long-Short-Term Memory (LSTM) models are good at dealing with time-

sequential data where it is necessary to “remember” information over 
long periods of time (e.g., seasonal variations).
• ConvLSTM2D models are tuned for information that varies over 2D space

and time. This might be a perfect fit for our situation.
• We could set this up using TensorFlow and Keras (Python libraries for 

machine learning with neural networks). Anaconda comes with them!



What We’ll Do

• We’re going to do something simpler.
• We know the temperature varies as -cos(t); that is, it is cold at night and 

warm during the day.
• We want to adjust the baseline, amplitude, and phase shift in a way that 

depends on location. Thus:

B(x, y) – A(x, y)cos(t + P(x, y))



We’ll Use Planes

• For our purposes, we’ll use tilted planes for the spatial functions.
• Here, x is (normalized) longitude, and y is (normalized) latitude.

• The goal is to find values for the nine parameters that minimize the total 
squared error.
• We can set b0 = 20.0, a0 = 5.0, and p0 = 0.0 with all other values 

zero initially

B(x, y) = b0 + b1x + b2y
A(x, y) = a0 + a1x + a2y
P(x, y) = p0 + p1x + p2y



Evaluation Function

• For a given set of tunable parameter values:
• For each item in the training data set:

• Compute the error between the predicted temperature and the “real” temperature.
• Square the error and add it to an accumulated error.

• Divide the accumulated error by the number of data points.
• Take the square root of the result (root-mean-squared or RMS error).

• The goal is to adjust the parameters repeatedly to find the 
minimum RMS error.



Gradient Descent

• Talk about gradient descent


