

TCP Protocol Details, Part 1

Vermont Technical College
Peter C. Chapin

Introduction: What Not To Do

● IP Network is unreliable
● Data might never get delivered
● Data might get delivered multiple times
● Data might get delivered in the wrong order

● Most applications want reliability
● Acknowledge every packet, retransmit when data

is lost.
● Use sequence numbers to recover order and

detect duplicates.

Stop and Wait

Sender Receiver

Transmit Packet #1

Wait for ACK #1

Protocol transmits, stops and waits…

If no ACK received after a “suitable” time, resend

Receiver uses sequence numbers to ensure duplicates are detected

What’s the Problem?

● Throughput is terrible!
● Assume: Round Trip Time (RTT) of 50 ms…
● Assume: Packet contains 1500 octets of data…
● Then…

– 1500 octets every 50 ms => 30,000 octets/s
– Independent of network bandwidth!!

● Stop and Wait is okay for…
– Small amounts of data with lax latency requirements
– When the sender and receiver are near each other (small

RTT).

Extreme Example

● Long fat pipes…
● High latency, high bandwidth
● 10,000 miles at 80% speed of light, 10 Gbps.

– ~67 ms transit time => ~670 million bits on the the wire.
– ~56,000 Ethernet II frames!

● Stop and Wait puts only one frame on the link at a
time. Just ONE!

TCP Does Not Do This!

● TCP is highly sophisticated
● Can transmit speculatively before seeing any ACKs
● Can adapt transmission rate to account for

receiver’s abilities.
● Can adapt transmission rate to account for network

congestion
● Can dynamically adjust speed to account for

changes in network performance or receiver
abilities

● Can do this simultaneously in two directions

But TCP is Not Perfect

● TCP assumes packet loss is due to network
congestion.
● Not always true: wireless networks also loose

packets from interference and fading.
● TCP makes incorrect assumptions in such cases.
● Doesn’t perform as well across wireless links as it

theoretically could.
● Protocol was designed for a wired world.

Frame Structure

Segment

Packet

Frame

TCP Payload Data

Ethernet Header
(Data Link)

IP Header
(Network)

TCP Header
(Transport)

FCS (4 octets)
(Data Link)

20 octets, v4
40 octets, v6
(nominal)

20 octets
(nominal)

14 octets

TCP Header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

TCP Header Notes

● TCP described in RFC-793 (with updates)
● Note...

● Source/Destination addresses in IP header.
● Every octet has a sequence number.

– Seq # gives number for first octet in segment.
– Ack # gives number for next octet expected.

● Header length (“data offset”) in units of 32 bits.
● Window size: We will discuss later.
● Checksum made over “pseudo header” and data.
● Options typically only occur on initial segments.

TCP Header Flags

● Several flag bits are defined...
● URG: The value of the Urgent Pointer is valid.

● ACK: The value of the Ack # is valid.

● PSH: The data should be “pushed” to the receiver.

● RST: Reset (end) the TCP connection abruptly.

● SYN: Synchronize (initiate the connection).

● FIN: Close the connection cleanly.

MSS Option

● Most common option is “Maximum Segment
Size”
● Discussed at length in RFC-879
● Used when connection established. Can only

appear in a segment with the SYN flag.
● Can be different in the different directions.
● Default 536 bytes (data)

– Overall packet size 576 bytes (data+TCP+IP).
● Bigger is better (reduces overhead)
● Ethernet MSS commonly 1460 bytes

– Ethernet frame payload 1500 bytes.

Sequence Numbers

● Every octet has its own number!
● Sequence numbers independent in the two

directions.
● Each segment specifies the sequence number

of its first data byte and acknowledges the next
sequence number expected from the other side.

● Segment boundaries are arbitrary.

121 122 123 124 125 126 127 128

H e l l o '\n'

Stream Oriented

● TCP is a stream oriented protocol
● Data is not broken into records, but instead treated

as a continuous stream.
● TCP breaks data into segments arbitrarily.
● Applications unaware of segment boundaries.
● A single call to write might...

– Generate multiple segments
– Generate only part of a segment

● A single call to read might...
– Obtain data from multiple segments.
– Obtain data from only part of a segment

TCP Buffers

Send
Buffer

Receive
Buffer

TCP Connection
(Bidirectional pipe)

OS

Application

write()

read()

TCP Buffers Notes

● write normally returns at once.
● Even before the data has been sent!

● If data arrives it is buffered.
● If receive buffer non-empty, read returns at

once.
● Even if data size less than requested amount.

● If receive buffer empty, read blocks.

● When connection closed, buffers drain normally.
● Application can terminate before TCP is done!

Establishing TCP Connection

CLIENT SERVER

connect()

connect()
returns

accept()
returns

SYN segment with desired destination port
and initial sequence number (Seq #)

SYN segment with initial sequence number of
server and Ack # = client's ISN + 1

Ack # = server's ISN + 1

● “Three way handshake” : SYN, SYN/ACK, ACK
● Initial sequence numbers (ISNs) independent

and arbitrary
● Connection ESTABLISHED once complete.

Close TCP Connection
ACTIVE CLOSE PASSIVE CLOSE

FIN segment (may or may not contain data)

ACK of FIN + 1

FIN segment

ACK of FIN + 1

read returns EOF
Still possible to
write.

close()

close()

● Middle two segments might get combined
● For example: If application closes very quickly after
read returns EOF.

TCP State Diagram, Part 1

CLOSED

LISTEN

ESTABLISHED

SYN_RCVD SYN_SENT

app: calls connect
send: SYN

recv: SYN, ACK
send: ACK

app: calls listen

recv: SYN
send: SYN, ACK

recv: ACK

TCP State Diagram, Part 2

FIN_WAIT_1 CLOSING

FIN_WAIT_2 TIME_WAIT

ESTABLISHED

app: calls close
send: FIN

recv: ACK

recv: FIN
send: ACK

(Wait for 2MSL seconds)

recv: FIN, ACK
send: ACK

recv: FIN
send: ACK

recv: ACK

Done!

TCP State Diagram, Part 3

ESTABLISHED CLOSE_WAIT

LAST_ACK

recv: FIN
send: ACK

app: calls close
send: FIN

recv: ACK

Done!

Tools

● On Unix use netstat to view connection state
● netstat -a shows “all” connections (including

listening sockets).
● netstat -A inet6 shows connections in the

“inet6” address family (TCP running on Ipv6).
● See man page for more details.

● On Windows TCPView is a GUI netstat tool
● http://www.sysinternals.com/

http://www.sysinternals.com/

Stop-And-Wait

● Simple protocol for transferring data.
● Send one segment.
● Wait for acknowledgement.

● Easy to implement, but has disadvantages:
● Only one segment on the network.

– Inefficient use of network bandwidth.
● Sender must wait for 2*TT (where TT is the transit

time across the network).
– Could be many milliseconds... or even seconds!
– Lots of waiting; slow data transfer.

Transit Time

● Finite speed of light (2.998x108 m/s)
● Time is required to move bits (on the order of 50 ms

to go 10,000 miles).
● Speed on cables is actually less.

– “Velocity factor” on typical cables might be 0.80.
– Due to dielectric material used as insulation and cable

geometry.

● Also router delays.
● This is usually the biggest factor.

Router Delay

Packets wait in buffers
Waiting time can be considerable

Slow or congested

Stop-And-Wait Computation

● Assume...
● Transit time = 50 ms (one way) or 100 ms round.
● Each packet contains 1000 bytes.
● Transfer rate = 1000 bytes/0.1s = 10,000 bytes/s.

● Stop-And-Wait must wait for the ACK
● Spends most of its time waiting.

● Transfer rate is independent of bandwidth!
● Calculation above is valid as long as bandwidth is

sufficient.

Latency vs Bandwidth

● Be aware that “latency” is different than
“bandwidth.”
● Latency:

– How long does it take for the first bit transmitted to reach
the destination?

– Delays due to the speed of light and router buffering, etc.
● Bandwidth:

– How many bits/s can be transmitted?

● High latency, high bandwidth connections...
● “Long fat pipes.”

TCP Window

Data not yet sentData ACKed

Data in transitSeq #100

Seq #200

● Data is sent to fill a “window”
● TCP speculatively sends without ACKs
● Fills the network with data

– Much more efficient than stop-and-wait
● By the time the window is transmitted, the first

ACKs arrive (we hope).
● Each ACK moves the window forward.

TCP Window

Data not yet sentData ACKed

Data in transitSeq #100

Seq #200

Now: segment arrives: ACK# 150; window 100

TCP Window

Data not yet sentData ACKed

Seq #100

Seq #200

Begin sending at #200

● ACK: “I've received everything below the ACK
number.”

● Window moves as ACK advances.
● Exposed data can now be sent until window is filled

again.
● Try to keep window-size bytes of data in flight at all

times.

TCP Window

Data not yet sentData ACKed

Data in transitSeq #100

Seq #200

Now: segment arrives: ACK# 150, window = 200

Window size can change!

TCP Window

Data not yet sentData ACKed

Seq #100

Seq #200

● Receiver modulates window size to reflect
receive buffer size.
● If the receiver has only a small buffer: small

window.
● As receiver consumes data, buffer empties.

Window opens.
● Sender never sends more than receiver can

handle!

TCP Window

Data not yet sentData ACKed

Data in transitSeq #100

Seq #200

Now: segment arrives: ACK# 150, window = 50

Zero size means RX buffer full

TCP Window

Data not yet sentData ACKed

Seq #100

Seq #200

Window doesn't expose new data Can't send.

TCP Window

Data not yet sentData ACKed

Seq #100

Seq #200

Now: segment arrives: ACK #150, window = 100

Segment ACKs nothing new.
Just used for window size update.

TCP Window

Data not yet sentData ACKed

Seq #100

Seq #200

TCP can begin sending

Example
Seq# 0x12345678
Win: 16384

Seq# 0x9ABCDEF0
Ack# 0x12345679
Win: 32768

SYN

SYN, ACK

Seq# 0x12345678
Ack# 0x9ABCDEF1
Win: 16384

ACK

1024 bytes data
Seq# 0x12345679
Ack# 0x9ABCDEF1
Win: 16384

1024 bytes data
Seq# 0x12345A79
Ack# 0x9ABCDEF1
Win: 16384

0 bytes data
Seq# 0x9ABCDEF0
Ack# 0x12345E79
Win: 30720

ETC...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

