IPv6 Details

Vermont State University Peter Chapin

General Goals

- Simplified header (relative to IPv4)
 - Routers should not have to compute a checksum.
 - IPv4 has a header checksum that needs to be recomputed at each step.
 - Instead, underlying link protocol or upper-level transport or application protocol can do error detection.
 - . Many features are relegated to "extension headers."
 - The application only uses extensions that it needs.
 - Keeps header size reasonable.
- No (on-network) fragmentation allowed.
 - Fragmentation in IPv4 has proved problematic.

Header

• IPv6 header is (nominally) 40 bytes. • _+_+_+ |Version| Traffic Class Flow Label Payload Length Next Header Hop Limit Source Address Destination Address -+-+-+-+-+-+

Hop Limit

- "Hop limit" field is similar to IPv4's "time to live."
 - Number of routers the packet can pass through.
 - Limits packets from circulating indefinitely in an erroneous routing loop.
 - Field 8 bits so maximum number of hops just 255.
 - Is this enough?
 - IPv6 networks can contain a huge number of nodes.
- Defn: The "diameter" of the network is the maximum number of hops between any pair of nodes.

Diameter of the Internet?

- Nobody knows for sure.
- However... node count grows exponentially with the diameter.
 - . Thus a large hop count field may be unnecessary
 - This was a debated topic in the design of IPv6.

Backbone

Local Networks

Local Networks

Flows

- Flows are an experimental feature (RFC-3697)
 - Not widely implemented (as far as I know)
 - Stream of packets designated as a "flow" by the source.
 - Often associated with a transport connection.
 - Defined by (source-address, destination-address, flow label)
 - The source must use a flow label of zero by default.
 - Applications and transport protocols MUST have a means for setting the flow label.
- Intended to be used for quality-of-service (QoS) applications.

Extension Headers

- Various kinds are defined
 - Hop-by-hop (processed by routers).
 - Destination options for all destinations in the routing header (if there is one)
 - Routing (requested path through the network)
 - Fragment (source node *can* fragment packets, so support is still necessary)
 - Authentication (AH... part of IPsec)
 - Encapsulation Security Payload (ESP... part of IPsec)
 - Destination options (only for final destination)

Layout

Main Header

Next Hdr

Next Hdr Hdr Length Header contents... Extension #1

Next Hdr Hdr Length Header contents... Extension #2

Special marker for end-of-list

This design allows for easy future expansion. New extension headers can be defined at any time.

Extension Header Notes

- A few rules of interest... (see RFC-2460)
 - Headers are only processed by the destination
 - Except for "hop-by-hop options"... which must be first.
 - . Routers don't have to dig around looking for them!
 - Headers must be processed in the order given.
 - Some extensions may prohibit further processing.
 - . An unrecognized header causes the packet to be discarded.
 - An ICMPv6 message is returned to the sender.
 - "Don't process packets you don't fully understand."

Option Headers Format

- Option Headers have a generic format.
 - Contain a variable number of "type-length-value" (TLV) encoded options.
 - . New options can be defined later.

Next/Length	Туре	Length	Value	More TLV options
	0 1:1-	0 1:1-		
	8 bits	8 bits	Option	is must be processed in order

Type Field

• Option type field has additional structure.

Flag: Can option data change in route?

Actual type field just five bits.

How to process if unrecognized

0 => Skip option.

1 => Discard packet.

2 => Discard packet and send ICMPv6

3 =>Like (2) for non multi-cast.

Neighbor Discovery Protocol

- Used for... (see RFC-2461)
 - Finding link-layer addresses that correspond to an IPv6 address (like IPv4's ARP).
 - Finding routers on a given link.
 - Finding the link's prefix(es) (global addresses)
 - Link parameters
- ND thus combines the functionality of several separate IPv4 protocols.

Special ND Addresses

- Some ND functions are done before the node has a normal address.
 - FF02::1 Link scope all nodes multi-cast (used to talk with all nodes on a particular link).
 - FF02::2 Link scope all routers multi-cast (used to talk with all routers on a particular link).
- Solicited node multi-cast (RFC-4291)
 - Suppose node address = 4037::1:800:200E:8C6C
 - Solicited node address = FF02::1:FF0E:8C6C
 - Prefix FF02::1:FF00:000/104
 - Lower 24 bits from the address above.

ND (ICMP) Message Types

- Router Solicitation
- Router Advertisement
 - Contains a list of link prefixes
 - Options: hop limit, link MTU, etc., hosts should use.
- Neighbor Solicitation
 - Multi-cast to the solicited-node address.
- Neighbor Advertisement
 - Unicast back to the requesting node.
- Redirect