Character Sets

Vermont Technical College Peter C. Chapin

Problem?

- Sharing text requires common character sets.
 - Computers deal with numbers.
 - Humans deal with characters.
 - Must define bidirectional mapping from numbers to characters.
 - 0x41 <=> 'A'
- Many different writing systems...
 - Prompts many different character sets.
 - Conversion, Translation, Interpretation complicated.

Network Problem?

- Why does this matter to networking?
 - Low level protocols don't care
 - Data just a bag of bytes.
 - TCP/IP transports the bytes raw.
 - No semantic interpretation.
 - High level (application) protocols do care
 - Interact with humans, and humans care about characters
 - Any other text sharing application
 - Shared files
 - Databases
 - etc...

Presentation Layer

Character set translation is a network protocol issue

Some Terminology

- Code Point
 - The numeric value corresponding to a character
- Encoding
 - The way in which code points are mapped to octets
- Glyph
 - The image of a character
- Font
 - A collection of glyphs for every code point

Encoding?

- The way in which code points are represented
 - For simple character sets, there is no encoding (or maybe it is just the "nop" encoding)
 - The octets used are the same as the code points (ASCII is like this)
 - For complex character sets, there can be multiple encodings
 - Sender/receiver must agree on both the character set and the encoding used (Unicode is like this)
 - There is often confusion/ambiguity about this issue.
 - The terms "encoding" and "character set" are sometimes used interchangeably

ASCII

- "American Standard Code for Information Interchange."
 - Very old character set used for "plain text."
 - 7 bits
 - Uses least significant bits of an 8 bit byte.
 - Most significant bit reserved for parity (error detection).
 Usually zero.
 - Only 128 characters.
 - Letter of the Latin alphabet (upper and lower case)
 - Digits
 - Various punctuation symbols
 - Control characters.

ASCII Trivia

- Various interesting characteristics of ASCII...
 - Codes assigned to letters are contiguous and in alphabetical order: 'A' => 0x41, 'B' => 0x42, etc.
 - BUT... All upper case letters come before any lower case letters.
 - So a simple comparison puts 'Z' < 'a'
 - Sometimes informally called "ASCII order."
 - Digits are contiguous
 - BUT... codes assigned to digits are not the digit's numeric value: '0' => 0x30, '1' => 0x31, etc.
 - Control characters are 0x7F and 0x00 .. 0x1F.
 - Subtract 0x40 from an upper case letter: ^A => 0x01

More ASCII Trivia

- Control characters...
 - Most control characters are officially used to control data flow over certain (old) communications systems.
 - Such as RS-232 serial ports, etc.
 - Some control characters are used for formatting:
 - Backspace (0x08)
 - Horizontal tab (0x09)
 - Carriage return (0x0D)
 - Line feed (0x0A)
 - Form feed (0x0C)
 - Otherwise no formatting control.

ASCII Usage

- ASCII is very widely used.
 - "Plain text" usually means ASCII to most people.
 - Good for program source code.
 - Many (older) programming languages assume source will be in a subset of ASCII. Modern languages tend to use Unicode.
 - Good for configuration files.
- Very generic.
 - "Everybody" can read it.
 - Good for documents to be widely shared.
 - Good for archival documents (RFCs use ASCII).

ASCII Limitations

- There are many limitations to ASCII
 - No significant formatting control.
 - Limited character set.
 - Good for English but not much else.
 - Limited collection of special symbols.
 - Mathematical symbols.
 - Special punctuation symbols
 - NOTE: The lack of special symbols is a problem even for English speakers.
 - Lacks the usual typographical characters used in publishing (like curly double quotation marks)

Extended ASCII

- Use the 8th bit to double the number of characters.
 - Not many applications need the parity bit *and* are limited to only 8 bit transmission units.
 - In most cases it is possible to send 8 data bits and parity if necessary.
- What to do with the extra characters?
 - Many variations exist.
 - Creates compatibility problems.

Additional References

- ISO-646
 - http://en.wikipedia.org/wiki/lso-646
 - International 7 bit character set family.
 - An old character set family. Not commonly used today.
- ISO-8859
 - http://en.wikipedia.org/wiki/ISO-8859
 - International 8 bit character set family.
 - Common usage today (especially ISO-8859-1).