

Data and Computer Communications

Tenth Edition by William Stallings

Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2013

CHAPTER 12

Ethernet

"Congratulations. I knew the record would stand until it was broken."

- Yogi Berra

Figure 12.1 Data Center Study—Percentage of Ethernet Links by Speed

Traditional Ethernet

Earliest was ALOHA

- Developed for packet radio networks
- Station may transmit a frame at any time
- If frame is determined invalid, it is ignored
- Maximum utilization of channel about 18%

Next came slotted ALOHA

- Organized slots equal to transmission time
- Increased utilization to about 37%

CSMA/CD Precursors

- Carrier Sense Multiple Access (CSMA)
 - Station listens to determine if there is another transmission in progress
 - If idle, station transmits
 - Waits for acknowledgment
 - If no acknowledgment, collision is assumed and station retransmits
 - Utilization far exceeds ALOHA

Figure 12.2 CSMA Persistence and Backoff

Nonpersistent CSMA

If the medium is idle, transmit; otherwise, go to step 2

Disadvantage:

Capacity is wasted because the medium will generally remain idle following the end of a transmission even if there are one or more stations waiting to transmit

If the medium is busy, wait an amount of time drawn from a probability distribution and repeat step 1

1-Persistent CSMA

- Avoids idle channel time
- Rules:
 - 1. If medium is idle, transmit
 - 2. If medium is busy, listen until idle; then transmit immediately
- Stations are selfish
- If two or more stations are waiting, a collision is guaranteed

P-Persistent CSMA

- A compromise to try and reduce collisions and idle time
- P-persistent CSMA rules:
 - 1. If medium is idle, transmit with probability p, and delay one time unit with probability (1-p)
 - 2. If medium is busy, listen until idle and repeat step 1
 - 3. If transmission is delayed one time unit, repeat step 1
- Issue of choosing effective value of p to avoid instability under heavy load

Value of p?

- Have n stations waiting to send
- At end of transmission, expected number of stations is *np*
 - If *np*>1 on average there will be a collision
- Repeated transmission attempts mean collisions are likely
- Eventually all stations will be trying to send, causing continuous collisions, with throughput dropping to zero
- To avoid catastrophe np<1 for expected peaks of n</p>
 - If heavy load expected, p must be small
 - Smaller *p* means stations wait longer

Description of CSMA/CD

If the medium is idle, transmit; otherwise, go to step 2

1.

If the medium is busy, continue to listen until the channel is idle, then transmit immediately

2.

If a collision is detected, transmit a brief jamming signal to assure that all stations know that there has been a collision and cease transmission

3.

4. After transmitting the jamming signal, wait a random amount of time, referred to as the *backoff*, then attempt to transmit again

А		D	
TIME t_0			
A's transmission	₩ T T T T T T T T T T T T T		
C's transmission			
Signal on bus			
TIME t ₁			
A's transmission			
C's transmission			
Signal on bus		$\Box \Box$	
TIME t_2			
A's transmission	ĪZ 777777777777777777777777777777777777	7777	
C's transmission			
Signal on bus	VZ. 7////////////////////////////////////	XXX	
TIME t ₃			
A's transmission	Tz 7////////////////////////////////////		2
C's transmission			
Signal on bus	[/_	///////////////////////////////////////	2

Figure 12.3 CSMA/CD Operation

Which Persistence Algorithm?

> IEEE 802.3 uses 1-persistent

Both nonpersistent and p-persistent have performance problems

> 1-persistent seems more unstable than p-persistent

- Because of greed of the stations
- Wasted time due to collisions is short
- With random backoff unlikely to collide on next attempt to send

Ę

Binary Exponential Backoff

- IEEE 802.3 and Ethernet both use binary exponential backoff
- A station will attempt to transmit repeatedly in the face of repeated collisions
 - On first 10 attempts, mean random delay doubled
 - Value then remains the same for 6 further attempts
 - After 16 unsuccessful attempts, station gives up and reports error
- I-persistent algorithm with binary exponential backoff is efficient over wide range of loads
- Backoff algorithm has last-in, first-out effect

Collision Detection

Table 12.1IEEE 802.3 10-Mbps Physical LayerMedium Alternatives

	10BASE5	10BASE2	10BASE-T	10BASE-FP
Transmission medium	Coaxial cable (50 ohm)	Coaxial cable (50 ohm)	Unshielded twisted pair	850-nm optical fiber pair
Signaling technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)	Manchester/on- off
Topology	Bus	Bus	Star	Star
Maximum segment length (m)	500	185	100	500
Nodes per segment	100	30		33
Cable diameter (mm)	10	5	0.4 to 0.6	62.5/125 μm

Table 12.2

IEEE 802.3 100BASE-T Physical Layer Medium Alternatives

	100BASE-TX		100BASE-FX	100BASE-T4
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP
Signaling technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Data rate	100 Mbps	100 Mbps	100 Mbps	100 Mbps
Maximum segment length	100 m	100 m	100 m	100 m
Network span	200 m	200 m	400 m	200 m

100BASE-X

- Uses a unidirectional data rate 100 Mbps over single twisted pair or optical fiber link
- Encoding scheme same as FDDI
 - 4B/5B-NRZI

100BASE-T4

> 100-Mbps over lower-quality Cat 3 UTP

- Takes advantage of large installed base
- Does not transmit continuous signal between packets
- Useful in battery-powered applications

Can not get 100 Mbps on single twisted pair

- So data stream split into three separate streams
- Four twisted pairs used
- Data transmitted and received using three pairs
- Two pairs configured for bidirectional transmission

Use ternary signaling scheme (8B6T)

Full Duplex Operation

- Traditional Ethernet half duplex
- Using full-duplex, station can transmit and receive simultaneously
- 100-Mbps Ethernet in full-duplex mode, giving a theoretical transfer rate of 200 Mbps
- Stations must have full-duplex adapter cards
- And must use switching hub
 - Each station constitutes separate collision domain
 - CSMA/CD algorithm no longer needed
 - 802.3 MAC frame format used

Mixed Configurations

 Fast Ethernet supports mixture of existing 10-Mbps LANs and newer 100-Mbps LANs
Supporting older and newer technologies

Stations attach to 10-Mbps hubs using 10BASE-T

Hubs connected to switching hubs using 100BASE-T

High-capacity workstations and servers attach directly to 10/100 switches

Switches connected to 100-Mbps hubs use 100-Mbps links

100-Mbps hubs provide building backbone

Connected to router providing connection to WAN

Gigabit Ethernet - Differences

Carrier extension

 At least 4096 bit-times long (512 for 10/100)

Frame bursting
Not needed if using a switched hub to provide dedicated media access

Figure 12.5 Gigabit Ethernet Medium Options (log scale)

10Gbps Ethernet

- Growing interest in 10Gbps Ethernet
 - High-speed backbone use
 - Future wider deployment
- Alternative to ATM and other WAN technologies
- Uniform technology for LAN, MAN, or WAN
- Advantages of 10Gbps Ethernet
 - No expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells
 - IP and Ethernet together offers QoS and traffic policing approach ATM
 - Have a variety of standard optical interfaces

Figure 12.6 Example 10 Gigabit Ethernet Configuration

Figure 12.7 10-Gbps Ethernet Distance Options (log scale)

100-Gbps Ethernet

- Preferred technology for wired LAN
- Preferred carrier for bridging wireless technologies into local Ethernet networks
- Cost-effective, reliable and interoperable
- Popularity of Ethernet technology:
 - Availability of cost-effective products
 - Reliable and interoperable network products
 - Variety of vendors

Figure 12.8 Example 100-Gbps Ethernet Configuration for Massive Blade Server Site

Multilane Distribution

used to achieve the required data rates

- Multilane distribution: > Virtual lanes:
 - Switches implemented as multiple parallel channels
 - Separate physical wires

- If a different number of lanes are actually in use, virtual lanes are distributed into physical lanes in the **PMD** sublayer
- Form of inverse multiplexing

(a) Virtual lane concept

(b) Alignment block

Figure 12.9 Multilane Distribution for 100-Gbps Ethernet

Table 12.3Media Options for 40-Gbps and
100-Gbps Ethernet

	40 Gbps	100 Gbps
1m backplane	40GBASE-KR4	
10 m copper	40GBASE-CR4	1000GBASE-CR10
100 m multimode fiber	40GBASE-SR4	1000GBASE-SR10
10 km single mode fiber	40GBASE-LR4	1000GBASE-LR4
40 km single mode fiber		1000GBASE-ER4

Naming nomenclature:

Copper: K = backplane; C = cable assembly Optical: S = short reach (100m); L - long reach (10 km); E = extended long reach (40 km) Coding scheme: R = 64B/66B block coding Final number: number of lanes (copper wires or fiber wavelengths)

CFI = Canonical Format Indicator VLAN = virtual local area network

Figure 12.10 Tagged IEEE 802.3 MAC Frame Format

Summary

Traditional Ethernet

- IEEE 802.3 medium access control
- IEEE 802.3 10-Mbps specifications (Ethernet)

IEEE 802.1Q VLAN standard

> High-speed Ethernet

- IEEE 802.3 100-Mbps specifications (Fast Ethernet)
- Gigabit Ethernet
- 10-Gbps Ethernet
- 100-Gbps Ethernet