CIS 1152 - Lab \#2 PHP Logic and Loops
 S. Ruegsegger
 Modified by Peter Chapin (with permission)

Objective

To explore the use of PHP logic (Boolean) conditionals and loops.

Task 1: Multiplication table

Student skill: nested loops
Use a nested loop to build a multiplication table in HTML of size $n x n$; where a single PHP variable $\$ \mathrm{n}$ determines the (square) size. For example, here are two tables.

This is a 5×5 multiplication table.

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	1	2	3	4	5
$\mathbf{2}$	2	4	6	8	10
$\mathbf{3}$	3	6	9	12	15
$\mathbf{4}$	4	8	12	16	20
$\mathbf{5}$	5	10	15	20	25

This is a $\mathbf{1 0} \mathbf{x} \mathbf{1 0}$ multiplication table.

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1 0}$									
$\mathbf{1}$	1	2	3	4	5	6	7	8	9
$\mathbf{2}$	2	4	6	8	10	12	14	16	18
20									
$\mathbf{3}$	3	6	9	12	15	18	21	24	27
$\mathbf{4}$	4	8	12	16	20	24	28	32	36
$\mathbf{5}$	5	10	15	20	25	30	35	40	45
$\mathbf{6}$	6	12	18	24	30	36	42	48	54
$\mathbf{7}$	7	14	21	28	35	42	49	56	63
$\mathbf{8}$	8	16	24	32	40	48	56	64	70
$\mathbf{9}$	9	18	27	36	45	54	63	72	81
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90

You may be creative with CSS or other formatting. Here are 4 requirements:

- There is a first column of row-headers and a first row of column-headers
- Row and column headers have a different color background.
- Row and column header text is bold.
- Color the row=column diagonal cells with a different, highlighting background color.

Task 2: Collatz Sequence

Student skill: while loops (unknown sequence ending) with if-then-else logic.
What is the Collatz Sequence? Read this: https://en.wikipedia.org/wiki/Collatz conjecture
This is an algorithm which can start with any (very large) integer and it always, and eventually (and rather quickly), ends at the number " 1 ". I find that amazing! I love it.

Here is the algorithm:

- If the number is even, divide it by 2
- If the number is odd, then return (3 * number +1)
- Keep doing this loop until the number is 1 .

Notice that evens get smaller, but odds get bigger!

Requirements:

- Print out the initial, very large number - which is at least $\mathbf{1 2}$ digits long.
- Print all numbers in a readable "comma" format.
- Make a two-column table where the first column is the step number and the second column is the resultant sequential number of the algorithm.
- Finally, after the table is ended, print out the number of steps.

Collatz Sequence

The initial number is: $\mathbf{4 3 8}, \mathbf{7 3 4}, \mathbf{7 8 4}, 387$.

step 1	$1,316,204,353,162$
step 2	$658,102,176,581$
step 3	$1,974,306,529,744$
step 4	$987,153,264,872$
step 5	$493,576,632,436$
step 6	$246,788,316,218$
step 7	$123,394,158,109$

Woo Hoo. The integer $438,734,784,387$ finished in 225 steps.

