std::string Quick Reference Card

Last Revised: August 18, 2013
© Copyright 2013 by Peter Chapin

Permission is granted to copy and distribute freely, for any purpose, provided the copyright no-
tice above is not modified. Permission is also granted to edit this document to change its file for-

mat.

The type string::size type is an unsigned integral type for use as an index or as
a length. The special value string: :npos, of type string::size type, can
never be used as a valid index.

The size of a string is the number of characters in the string. The capacity of a string is
the number of character sized units of memory reserved by the string. The capacity is al-
ways greater than or equal to the size.

Substrings are defined by an index to the first character and a length. If the length re-
quested for a substring is larger than the number of characters remaining in the string, all
of the remaining characters are taken. A substring length of string: :npos requests
the rest of the string no matter how many characters are remaining. If the starting index is
greater than the string's size, a std: :out of range exception is thrown. If the start-
ing index is equal to the string's size the only substring is the empty string.

Strings can contain binary data. The null character is not treated in any special way in a
string.

Constructors (and related methods)

string(); Constructs an empty string.
string (Copies str or a substring of str.
const string &str,
size type pos = 0,
size type n = npos);
string(const char *s); Copies a c-string.
string(size_type n, char c); Constructs a string by making n
copies of c.
string &operator=(const string &str); Assigns str to the current object.
string &operator=(const char *s); Assigns a c-string to the current
object.
string &assign(Assigns a substring of str to the
const string é&str, current object.
size type pos,
size type n);
string &assign(size_type n, char c); Assigns a string of n copies of ¢
to the current object.

Adding Characters

string &operator+=(const string &str); <AppendSStrtothecunent
object.

string &operator+=(const char *s); Appends a c-string to the current
object.

string &operator+=(char c); Appends the character c to the
current object.

string &append (Appends a substring of str to the

const string &str, current object.

size type pos,
size type n);

string &append(size_type n, char c); Appends n copies of c to the
current object.

string &insert(Inserts str into current object at
size type posl, const string &str); position pos1.

string &insert (Inserts a c-string into current
size_type posl, const char *s); object at position pos1.

string &insert(Inserts n copies of ¢ into current
size type posl, size type n, char c); object at pos1

string &insert (Inserts substring of str into
size_type posl, current object at pos1.

const string &str,
size type pos2,
size type n);

Removing Characters

string &erase (Erases a substring of the current
size type pos = 0, size type n = npos); object.

There are also a number of replace methods that take a pos1 and n1 as their first two parame-
ters that define a substring of the current object. They then follow the same pattern as the insert
member functions to specify the source text for the replacement.

Accessing Characters

char &operator[] (size_type pos); You can index a string with the []
operator. No bounds checking is done
(faster).

char &at(size_type pos); Similar to operator[] except that a
std::out_of range exception is
thrown if pos is out of range (slower).

string substr (
size type pos = 0,
size type n = npos);

Returns a substring of the current
object.

const char *c_str();

Returns a pointer to a c-style string
containing the current object’s contents.

Searching for Characters

size type find(
const string &str,
size type pos = 0);

Searches for first occurrence of str in
the current object starting at pos.
Returns position or npos if not found.

size type f£ind(

const char *s, size type pos = 0

) ;

Searches for first occurrence of c-string
s in the current object starting at pos.
Returns position or npos if not found.

size type find(
char c, size type pos = 0);

Searches for first occurrence of ¢ in the
current object starting at pos. Returns
position or npos if not found.

size type find first of(
const string &str,
size type pos = 0);

Searches for the first occurrence of any
character in str in the current object
starting at pos. Returns position or
npos if none found.

size type find first of(
const char *s,
size type pos = 0);

Searches for the first occurrence of any
character in s in the current object
starting at pos. Returns position or
npos if none found.

There are also several r£ind methods that work like the find methods above except that they
search for the last occurrence instead of the first. The default value for pos for those methods is

npos.

There are also two £ind_first_not_of methods that work like the find first of methods
except that they search for the first occurrence of any character that is not in the given string.

Finally there are two find last of and find last not of methods that work like the
find first of and find first not of methods except that they search for the last
occurrence of any character in (or not in) the given string. The default value of pos for those

functions is npos.

Useful Free Functions

string operator+ (const string é&lhs,
const string &rhs);

Concatenates the given strings and
returns the result as a new string.

string operator+ (
const char *lhs,

string operator+ (
const string &lhs,

const string &rhs

const char *rhs

Concatenates a c-string and a string

)7 | and returns the result as a new string.

) ;

string operator+ (
char 1lhs,

string operator+ (
const string &lhs,

const string &rhs

char rhs

Concatenates a character and a string

)i and returns the result as a new string.

) 7

bool operator==(
const string &lhs,
const string &rhs);

Compares the two strings. Returns
true if they are equal.

void swap(string &lhs,

string é&rhs

)i Swaps two strings. This operation is
optimized so that it only requires a
(short) time that is unrelated to the

size of the strings involved.

All the other relational operators (!=, <, >, <=, >=) are also supported. Furthermore overloaded
relational operators exists that allow for comparisons directly with c-strings (on either the left or
right hand sides). Comparing strings to characters directly is not supported.

Memory Management Functions

size type size();
size type length();

Returns the number of characters in the current object.

size type capacity();

Returns the number of characters the current object can hold
without reallocating storage.

void resize (
size type n);

Sets the size to n. If n is less than the current size, characters
are lost. If n is greater than the current size, the new
characters are initialized with the null character.

void resize (
size type n,
char ¢);

Similar to resize (size type) except that c is used to
initialize new characters in the case where the size is
expanded.

void reserve (
size type n);

Increase capacity to at least n. By making this call before
extending the size of a string, you can greatly enhance the
string’s memory management efficiency.

String I/0 Operations (non members)

ostream &operator<<(
ostream &os,
const string &str);

Outputs str to the given output stream.

istream &operator>> (
istream &is,
string &str);

Inputs a white space delimited word of any length
from the given input stream into str.

istream &getline(Inputs a line of any length from the given input
ist'ream &is, stream into str. The line ends at the first *\n”
string &str); encountered or when the stream reaches EOF. The

‘“\n’ is removed from the stream, but not added to

the string.
istream &getline (Similar to the get1ine above except that delim is
1stream &1s, used to delimit the lines instead of ‘\n’.

string é&str,
char delim);

Container Functions

Strings allow themselves to be accessed and manipulated like standard containers. They provide
a string::iterator type and methods begin and end for creating appropriate iterators.
String iterators are in the random access category. Strings also provide a push_back method for
appending characters to the end, and several iterator-based insert and searching functions. In this
respect std: :string is similar to std: :vector<char>. These functions are not detailed in
this version of this quick reference card.

