
C++ Programming Style Guide
© Copyright 2022 by Peter C. Chapin

Last Revised: December 12, 2022

Permission is granted to distribute this document freely provided that its content is
not modified. However, permission is also granted to convert the source of this
document into different file formats as desired.

Introduction
This document describes my personal style for C++ programming. Although the
style described here has many traditional elements, some of its features are
unique to me.

In this document “shall” is intended to define a requirement, “should” is intended
to define a recommendation, and “may” is intended to define an option. Making ex-
ceptions to this style is acceptable; exceptional circumstances are common.

 1 Naming

 1.1 Abstract types, classes, structs, enumerations, and class templates shall be
given names consisting of a capital letter followed by all lowercase letters.
Multiple words in such names shall each start with a capital letter but there
shall be no space or other punctuation marks between words. For example:
WordBuffer.

 1.2 Objects, functions (including methods), function templates, function param-
eters, and class data members, shall be given names consisting of all lower
case letters. Multiple words in such names shall be separated by a single un-
derscore character. For example: letter_count.

 1.3 Type names introduced with a typedef declaration outside of class scope
shall be given names consisting of all lower case letters with a “_t” suffix.
Multiple words in such names shall be separated by a single underscore char-
acter. For example: index_t.

 1.4 Type names introduced with a typedef declaration inside class scope shall
be given names consisting of all lower case letters with a “_type” suffix. Mul-
tiple words in such names shall be separated by a single underscore charac-
ter. For example: size_type.

 1.5 Names of entities that are intended to extend or mimic the standard library
should follow the same naming convention as the standard library even if
that would violate rules 1.1 through 1.4 above. For example: netbuff.

Page 1 of 6

 1.6 Names of constant objects and enumerators shall be given names using
mixed case where the first letter of each word in the name is uppercase and
all other letters are lowercase. Multiple words in such names shall be sepa-
rated by a single underscore character. For example: Red_Light, Pi.

 1.7 Macros, both object-like and function-like, shall consist entirely of uppercase
letters. Multiple words in such names shall be separated by a single under-
score. For example: BUFFER_SIZE.

 1.8 Abbreviations should be avoided in names except for certain very well
known exceptions. Abbreviations used by the standard library are acceptable
for names of things that are intended to extend or mimic the library. For ex-
ample: line_buffer (not line_buf), but max_count is okay because “max”
is a widely used abbreviation for maximum.

 1.9 Names should be long and meaningful. However, a special exception is
made for loop index variables: such names can be one of i, j, k, m, or n as is
traditional. Also it is recognized that short names are meaningful in some
contexts. For example, x_coordinate is probably the best but x_coord
might be acceptable under some circumstances. Even x could be acceptable
as, for example, a Cartesian coordinate in a graphing program. Short names
may also acceptable if they follow the names used in a reference (for exam-
ple, an algorithms text book) provided the reference is listed in code com-
ments.

 1.10 Names, particularly of library components should be introduced into an ap-
propriate name space. No names should be added to the std name space ex-
cept for specializations of standard templates (this exception is required by
the language).

 1.11 Except for the std name space (see below), using directives shall not be
used. In any case, neither using directives nor using declarations shall appear
in a header file. Using declarations should be used sparingly and shall never
be used at global scope. In general names, other than standard names,
should be qualified by their name space.

 1.12 A using directive for the std name space should be put at the top of each
file immediately after the include directives. The standard name space is spe-
cial, being standard, and names from that name space need not be qualified.

 2 Spacing/Formatting

 2.1 The braces that delimit a block, class definition, array or structure initializa-
tion, or enumeration definition shall follow this format:
if(x == y) {

Page 2 of 6

 // Blah...
}

 2.2 The braces that delimit a function or method definition shall follow this for-
mat:
void f()
{
 // Blah...
}

 2.3 Material inside a block shall be indented by four spaces. Declarations be-
neath the access specifiers in a class definition shall be intended by four spa-
ces past that of the access specifiers (the access specifiers themselves need
not be indented relative to the class header). Statements beneath case labels
in a switch statement shall be indented by four spaces past that of the case
labels. These rules apply recursively to nested blocks, class definitions, and
switch statements.

 2.4 Lines that are continued on the next line should be indented four spaces
past that of the continued line.

 2.5 Function calls or function declarations that are broken over multiple lines
should treat the parenthesis in the function call or declaration like braces for
purposes of formatting. In such a case, each parameter of the call or declara-
tion should be on a line by itself (although closely related parameters may be
grouped if desired).

 2.6 If there is only one statement inside a block, the braces are optional. How-
ever, the indentation rules shall still apply if that statement is on a separate
line from the control structure that opens the block.

 2.7 Extremely short functions (particularly in-line functions) may have bodies
that are all on one line even though this would violate rule 2.2 above. For ex-
ample
inline int max(int a, int b)
 { return (a > b) ? a : b; }

 2.8 There should be no space between a unary operator and its operand.

 2.9 There should be at least one space between a binary operator and its oper-
ands. Exception: the ‘.’, ‘->’, ‘.*’, and ‘->*’ operators shall not have any spa-
ces between them and their operands.

 2.10 There shall be at least one space after each comma or semicolon. How-
ever, there shall be no space before each comma or semicolon. (This rule is

Page 3 of 6

intended to mimic the normal rules of English writing).

 2.11 There should be one space after a (and before a).

 2.12 There should be no space after the name of a function in a function call or
declaration. This rule also applies to function-like macros.

 2.13 There should be no space after the reserved words if, for, or while.

 2.14 A source file shall be formatted assuming that a fixed width font is used.
Alignment may be used between source lines to emphasize relationships be-
tween those lines. In fact such alignment is encouraged. RATIONALE: Al-
though proportional width fonts are popular in most writing, and are even oc-
casionally used in programming, they don’t make aligning one line with an-
other very feasible. Such alignment is an excellent device for highlighting the
similarity between related, but complicated operations.

 2.15 A source file shall be formatted so that no line is longer than 96 characters.
RATIONALE: To maximize the likelihood that the source file will display prop-
erly in a wide range of environments, very long lines should be avoided. The
96 character limit, while arbitrary, allows reasonably long lines without get-
ting into problems of line wrapping or truncation on most systems.

 3 Usage

 3.1 Every object should be initialized when it is declared. Every object’s point of
declaration should be close to where it is first used. For loop indexes should
be declared as part of the loop except in the cases where the value of the in-
dex variable is needed outside of the loop.

 3.2 Only new style casts shall be used. RATIONALE: New style casts provide
more information to the reader of the program. Also, since they are more
specific than the general purpose old style cast, their consistent usage may
help the compiler detect inappropriate casts.

 3.3 All expressions shall have appropriately matched types. Explicit casts shall
be used to indicate intent in cases where the types do not match naturally.
Casts shall be used even when automatic type conversion rules would cause
the same conversion. RATIONALE: Although C++ provides many implicit type
conversions, one should program as if it did not have those conversions. Such
an approach produces more robust programs. If available a tool should be
used to verify type usage strictly. See 3.4 below.

 3.4 Programs should be developed using the highest reasonable warning level
provided by the compiler. Code should be written so that it compiles without
warnings. Exception: It is understood that some compilers provide very ag-
gressive warning levels that might be considered “unreasonable” for general

Page 4 of 6

use.

 3.5 An explicit return statement may be placed at the end of void functions.

 3.6 Every possible value of a switch statement's controlling expression should
be accounted for in the switch statement's case list. If necessary one should
include an empty default case to explicitly document one's intention to ignore
values not otherwise mentioned.

 3.7 Any class with virtual methods shall have a virtual destructor.

 3.8 Any class that has either a destructor, a non-trivial copy constructor, or a
non-trivial assignment operator should have all three of these methods. If
any of these methods are not actually necessary, explicit documentation to
that effect shall be added to the class.

 3.9 All data members of a class should be private. Protected data may be used
in some cases. Structures (as opposed to classes) may have public data mem-
bers.

 3.10 Inline methods should be defined outside the class definition. Class defini-
tions should only contain method declarations. RATIONALE: Although this is
awkward at times, it is important to separate the interface of a type from its
internal structure. Making a method inline is an implementation detail; it
should not be part of a class's interface. However it is understood that the
syntactic overhead of defining an inline method outside the class definition,
particular in the case of template classes, is sometimes very high. In such a
case, this rule can be cautiously violated.

 4 Documenting

 4.1 Each source file shall have a comment header containing the name of the
file, the author, and a description of the file’s contents. The comment header
may also include a “to-do” list, a revision history (in cases where a revision
control system is not being used), relevant references, and licensing informa-
tion.

 4.2 Each module in the program should have associated documentation that
describes how to use the module and, optionally, how the module works. The
documentation for a module may include pseudo-code, UML diagrams, sam-
ple code, and any other information that will aid in the understanding of the
module.

 4.3 Each declaration in a header file should have an associated comment that
describes the interface to the declared entity. If a module has associated doc-
umentation, these comments may be sparse (perhaps just references to the
documentation) otherwise they should be complete enough to serve as the

Page 5 of 6

documentation. An inline documentation tool such as Doxygen may be used
to create documentation but the use of such tools is neither required nor nec-
essarily recommended. RATIONALE: Inline documentation tools have their
uses, but the large comments they require (if good quality documentation is
desired) can be distracting in the C++ source files. Some programs may be
better served with out-of-line documentation.

 4.4 Each function in an implementation source file should have a comment
header containing a brief description of how the function works. Note that
implementation comments should not describe the interface to a function if
the interface has been described elsewhere.

 4.5 The body of each function shall be broken into logically distinct parts with
blank lines separating the parts. A short comment may be provided for each
of these parts.

Page 6 of 6

