
Use of SPARK in a Resource Constrained Embedded
System

Chad Loseby
Vermont Technical College

Randolph Center, VT
closeby@vtc.vsc.edu

Peter Chapin
Vermont Technical College

Randolph Center, VT
pchapin@vtc.vsc.edu

Carl Brandon
Vermont Technical College

Randolph Center, VT
cbrandon@vtc.vsc.edu

ABSTRACT
We are constructing a remote sensing buoy that will be de-
ployed on the Arctic sea ice north of Alaska. The buoy
will gather environmental data and transmit that data back
to home base via the Iridium satellite network. This data
will then be used (by others) to refine models of ice move-
ment. To enhance reliability the buoy software was written
using SPARK Ada. SPARK was also helpful in reducing
the memory footprint of the software to an acceptable level.
Note also that the construction of the prototype buoy is a
student project. Thus our experience is in an educational
context.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; K.3.2 [Computers and Education]: Computer
and Information Science Education—computer science ed-

ucation; C.3 [Special-Purpose and Application-Based

Systems]: Real-Time and Embedded Systems

General Terms
Languages, Experimentation

Keywords
Ada, msp430, spark, student project

1. INTRODUCTION
This project is part of a collaboration between Vermont

Technical College (VTC) and the University of Vermont
(UVM). Professor Jun Yu, Associate Chair Department of
Mathematics & Statistics at UVM, has been mathematically
modeling the movement of Arctic sea ice as it melts. This
movement is influenced by many factors include tempera-
ture, wind speed, and wind direction. Previous work used
satellite photographs of the ice as model input [7]. However
this work suffered from a lack of “ground truth” information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGAda’09, November 1–5, 2009, St. Petersburg, Florida, USA.
Copyright 2009 ACM 978-1-60558-475-1/09/11 ...$10.00.

Vermont Technical College’s role in this project is to build
several buoys that will be deployed on the Arctic ice sheet
to collect environmental data and transmit that data back
to Vermont. During the 2008-2009 academic year one of us
(Loseby) began developing the software for a prototype buoy
as a senior project.

The prototype buoy is built around a CubeSat Kit [2].
This platform is based on the TI MSP430 microcontroller.
It has significant constraints in processing power, ROM, and
RAM. Specifically our development system used an MSP-
430F149 MCU at 8 MHz with 60 KiB of ROM and only
2 KiB of RAM. We are interested in using this platform
primarily because of its extremely low power consumption,
but also because we have hopes of launching a satellite based
on it as a future project [6]. Thus a secondary goal of this
project was to gain experience with this platform.

There are five environmental parameters that the buoy
needs to gather. These parameters are location, tempera-
ture, wind speed, and wind direction. Because the ice ro-
tates as it moves it is also necessary to record a magnetic
bearing that, together with location, provides an absolute
orientation of the buoy. These parameters will be gathered
once every 30 minutes and transmitted to home base via a
satellite modem using the Iridium short burst data service.

To simplify the design the buoys will be battery pow-
ered (instead of solar powered) using a Tadiran PulsesPlus
lithium thionyl chloride 7.2V 19Ah battery. Experience by
the Army Cold Regions Research & Engineering Laboratory
[5] suggests that this power supply should be sufficient to run
the buoy for up to several months provided care is taken
with power management. Since the buoys are expected to
fall into the ocean as the ice melts there is no need for very
long term operation.

Because it will be infeasible to perform any maintenance
on the buoy once it is deployed, issues of reliability are of ut-
most importance in this application. In particular, a “crash”
of the buoy software will cause a failure of the mission. Even
worse than an outright crash, however, would be an error
that allows the buoy to operate but return incorrect data.
To help avoid these problems the software was developed
using SPARK Ada. The extra level of reliability provided
by SPARK will also be important when we use this platform
in a future satellite project.

2. SOFTWARE OVERVIEW
The overall structure of the software is rather simple as

illustrated by the flowchart in Figure 2 The buoy spends
most of its time in a deep sleep state. A hardware timer

Figure 1: Buoy software main loop.

generates periodic interrupts that are counted by software to
accumulate an overall sleep time of 30 minutes. After being
awakened, the buoy collects data from the various sensors,
including time and location information from a GPS unit.
This process can take several minutes but it is done entirely
sequentially. The software makes no use of concurrent tasks.

The gathered data is stored, along with associated time
stamps in several buffers with one buffer for each type of
reading. During the reporting phase, the buoy packs as
many readings as possible into a single short burst data
packet and transmits that packet to Vermont. It is pos-
sible to pack more data into a short burst data packet than
can possibly be gathered in a single run of the data gath-
ering phase. Thus even if the buffers are non-empty at the
start of a particular loop pass they will eventually drain as
the loop executes.

The buffers account for possible problems in either gath-
ering data or reporting it. If a sensor malfunctions, no data
for that sensor will be entered into the buffer but this will
not cause any complications for the handling of other data.
If the satellite link goes down, data will accumulate in the
buffers until such time as the link is up again. Note that
due to memory constraints the buffer sizes are small, but
because of the low sampling frequency they can still hold
several hours worth of data.

Each buffered data item is time stamped separately. This
is because the time at which the data item is reported may
be much later than the time when it was gathered. Since
the buoy’s location is one of the data items being reported,
the returned (time, location) pairs allow a trajectory of the
buoy to be plotted. This trajectory forms a basis for the
interpretation of the other (time, value) data item pairs.

3. TOOL CHAIN
To our knowledge there is no Ada compiler available that

specifically targets the MSP430 microcontroller. It may be
possible to build a cross compiling version of GNAT using
gcc’s MSP430 target [3]. However, this would require spe-

Figure 2: Tool chain.

cialized knowledge of gcc technology, which was outside the
scope of this project. Instead we used Sofcheck’s Ada to
C translator, Ada Magic, to convert our Ada source into
plain C [4]. We then used Rowley Associates’ CrossWorks
C compiler for the MSP430 to generate our final object code
[1]. This tool chain is shown in Figure 3. In this figure the
square boxes indicate code and the rounded boxes indicate
tools that process the code.

This approach has the advantage of using a back end C
compiler that officially supports our platform. In fact, we
used several small C functions for interacting with hardware
resources. In order to keep as much of the code as possible
in Ada, and thus visible to the SPARK tools, a significant
effort was made to keep the C functions as simple as possible.
For example our package that exposes the system timer to
Ada has the following specification

package Timer

--# own Timer_Hardware;

is

procedure Initialize;

--# global out Timer_Hardware;

--# derives Timer_Hardware from ;

pragma Import(C, Initialize);

procedure Sleep;

--# global in out Timer_Hardware;

--# derives Timer_Hardware from Timer_Hardware;

pragma Import(C, Sleep);

end Timer;

Timer Hardware is a SPARK own variable that stands
for the state of the hardware used by the timer. We imple-
mented these procedures in C as follows.

void Timer_Sleep(void) {

// Enter Low Power Mode 3

_BIS_SR(LPM3_bits);

}

void Timer_Initialize(void) {

// Timer A: Source TACLK, Clear, Mode 1.

TACTL = TASSEL0 + TACLR + TAIE;

TACTL |= MC1;

// Enable interrupts

_EINT();

}

We also provided an interrupt service routine for the timer
that awakens the processor when the timer overflows. Pro-
cedure Sleep returns when this occurs.

void Timer_A(void) __interrupt [TIMERA1_VECTOR]

{

// If we are overflowing, wake up the system.

if (TAIV == 10) {

_BIC_SR_IRQ(LPM3_bits);

}

}

This C code is necessarily very system specific. However,
the Ada code that calls procedures Initialize and Sleep is
free of system dependencies and thus does not require an
Ada compiler with any knowledge of the MSP430 platform.
We handled interfacing with other hardware resources (A/D
converters, the serial port, and some LEDs for test purposes)
in a similar way.

4. COMMENTS ON SPARK
Because our platform is extremely resource constrained,

we are interested in using the smallest run time system pos-
sible. In fact, we are not using any part of the normal Ada
Magic run time system provided by Sofcheck. In addition to
reducing memory, this also simplifies the running software
and enhances reliability by eliminating a large body of code
that would otherwise be outside of SPARK’s visibility.

This rather extreme approach was made possible by two
factors. First, our system is relatively simple. The sensors
are read one at a time, and the serial communication is all
done with polled I/O. This is acceptable in our case because
of the slow time frame in which the system operates. Most
of the software complexity is in formatting and buffering
the data, and in gracefully handling hardware devices that
malfunction.

However, our ability to use a minimal run time system is
also a direct consequence of our use of SPARK. For exam-
ple, SPARK forbids user defined exception handling, so no
run time support for exceptions is needed. The Ada Magic
compiler outputs calls to certain run time library functions
for exception handling, but we provided empty implementa-
tions of these functions to satisfy the linker.

SPARK helps us to justify this approach. For exam-
ple, Ada Magic’s output includes calls to a C function rts -
elab check that is used to verify that packages are elaborated
in an appropriate order. However, under SPARK rules the
semantics of a program are not affected by elaboration order;
the check can never fail. Thus we are justified in providing
an empty implementation for this function.

Ada Magic also emits calls to functions that check for
sufficient stack space and for constraint violations. We are

justified in providing empty implementations for these func-
tions only if we can statically prove that our system will
never run out of stack space or raise Constraint Error. Do-
ing this will entail using SPARK proof annotations. At the
time of this writing we have not completed that step, but it
is our intention to do so before actually deploying the buoy.

Notice that there is no danger of accidentally using a run
time library function unexpectedly. Whenever Ada Magic
attempts to call a new function from its run time library, our
system fails to link. This forces us to evaluate each new func-
tion used. In some cases we changed the Ada source specif-
ically to avoid using run time library functions we didn’t
want to implement. For example in one case Ada Magic
called a function to compute the mod operation because C’s
modulus operator does not have the right semantics. Rather
than provide this function in C, where SPARK is unable to
analyze it, we modified the Ada source so that it was no
longer necessary.

The main disadvantage of SPARK was the learning curve
associated with it. This was our first attempt at using
SPARK in any capacity and extra time was required to un-
derstand the restrictions imposed by the language as well as
how to properly use the annotations.

In addition, debugging the system was complicated by
the fact that the CrossWorks debugger had no knowledge
of the original Ada source. All our debugging needed to be
done in C which was, in effect, the assembly language of our
system. We are fluent with C and that was very helpful,
even necessary, in a project of this nature.

We also encountered some interesting interactions between
SPARK and the AdaMagic compiler. In one case AdaMagic
produced a warning about a possible use of an uninitialized
variable. However, the data flow was such that no uninitial-
ized use was possible. When we included a spurious initial-
ization of the variable to satisfy Ada Magic, the SPARK Ex-
aminer complained that the initialization had no effect. We
eventually decided to disable all warnings from Ada Magic
on the assumption that the SPARK Examiner would be able
to detect a superset of the flow problems detected by Ada
Magic.

5. EDUCATIONAL OPPORTUNITIES
Vermont Technical College’s mission is education. Thus

all of our projects need to be evaluated in that context.
Although Ada is not used as the primary language in any
VTC courses, it is taught at the instructor’s discretion as a
supplementary language in several courses. Loseby was first
exposed to Ada in a programming languages course taught
by Chapin. In addition Ada has been used for the last two
years in a sophomore projects course. None of these courses
currently discuss SPARK; this is the first time anyone at
VTC, instructors and students alike, has attempted to use
SPARK in any capacity.

From a student perspective, SPARK was a welcome intro-
duction to static code analysis. Loseby found the SPARK
annotations much easier to understand and write after grasp-
ing the concept that hardware states could be represented
and described by those annotations. In many cases, the pro-
cess of visualizing the desired behavior in order to write an
annotation revealed logical errors or prompted the refactor-
ing of the code to improve efficiency or maintainability.

Chapin and Brandon intend to build on the experience of
this project by using the same approach in the construction

of the software for a VTC satellite. This will be done as one
or more senior projects with the first project group antici-
pated in the 2009-2010 academic year. In addition Chapin
intends to comment explicitly on SPARK during his fall 2009
delivery of the programming languages course, using exam-
ples taken from this project.

6. STATUS AND FUTURE DIRECTIONS
The work reported here has been on the construction of a

single prototype buoy to demonstrate the feasibility of our
design and of our approach. At the time of this writing
the development of the prototype is still in progress. We
have demonstrated reading temperature and wind direction
data, and sending that data back to Vermont via the Iridium
network. However, we still need to implement support for
gathering and transmitting wind speed and magnetometer
data.

In addition we are currently only using SPARK data flow
annotations. While this has been helpful with finding bugs
in our software, we still need to make use of the SPARK
proof tools to show that certain exceptions can’t occur. Our
system depends on this because of the way we have elimi-
nated exception handling support in the run time system.

Funding to construct the prototype continues through the
end of this year and we anticipate completing the prototype
in time to conduct field tests during the northern hemisphere
2009-2010 winter season. In the long term we hope to receive
funding to manufacture ten to twenty buoys for deployment
in the Arctic perhaps in March of 2011.

7. CONCLUSIONS
Using SPARK Ada in an educational setting to develop

software for a highly constrained embedded system without
a native Ada compiler is feasible. Although there are some
aspects of our project that have yet to be completed, we are
confident that we will be able to build on the success we
have had so far. One interesting benefit of using SPARK
was the way it allowed us to eliminate significant amounts
of run time support. This was essential in our case due to
the very limited amounts of memory available to us.

8. ACKNOWLEDGMENTS
This project is supported by grants from the Vermont

Space Grant Consortium, a part of the NASA Space Grant
program. Vermont Technical College also received generous
donations of commercial software from AdaCore, SofCheck,
Praxis, and Rowley Associates.

9. REFERENCES
[1] Crossworks for MSP430.

http://www.rowley.co.uk/msp430/.

[2] Cubesat kit home. http://www.cubesatkit.com/.

[3] GCC toolchain for MSP430.
http://mspgcc.sourceforge.net/.

[4] Sofcheck compiler technology.
http://www.sofcheck.com/products/adamagic.html.

[5] U.S. army cold regions research and engineering
laboratory (CRREL).
http://www.crrel.usace.army.mil/.

[6] C. S. Brandon. Use of ada in a student cubesat project.
Ada User Journal, 29(3), 2008.

[7] J. Yu, A. K. Liu, and Y. Zhao. Advances in

Geosciences 2005, chapter Sea Ice Motion and
Deformation in the Marginal Ice Zone Through SAR.
World Scientific Publishing Company, 2005.

