Ground Station 2011

 Jordan Hodge Jordan LyfordWilson Schreiber

Contents

Background
Problem Statement Solution

Mechanical
Areas of Interest
Mounting Configuration
Statics and Dynamics
Focal Point of Dish
Electrical
Motors
Sensors
Software
Controller
SatPC32
Serial Communication Interpolation
Calibration Techniques
Subsystem Videos
Budget
Timeline
Remaining Tasks Responsibilities
Special Thanks
Questions

Background - CubeSat

-CubeSat is $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ ($10 \mathrm{~cm} \approx 3.94$ inches)

- Solar Powered
- Utilizes GPS and Celestial Navigation Techniques
-Transmits Information from Sensors
- Camera, UV/IR Spectrometer, Electron Flux

Background - CubeSat

Background - Ground Station

- VTC developing CubeSat, transmits data > Continuing where previous groups have left off
o Have to follow CubeSat to receive data (2.4gHz)
- Existing 3-meter parabolic dish antenna
- Low orbit satellite revolves around Earth in minutes, seen for short time per orbit

Problem - Ground Station

- Track a low orbit satellite such as a CubeSat from horizon to horizon in as little as 30 seconds with an accuracy of $\pm 0.5^{\circ}$
> $180^{\circ} / 30$ seconds $=6^{\circ} / \mathrm{sec}$
- Move a 3 meter satellite dish
> 360° Azimuth (left/right)
> 180° Elevation (up/down)
o Interface to PC running SatPC32 (Satellite Tracking Program)

Azimuth and Elevation

o Azimuth
> A left to right angle measurement from a fixed point (north in navigation)

- Elevation
> Angle between the flat plane and the object in the sky (satellite).

Solution

Mechanical Areas of Interest

o Axis orientation (EL/AZ or AZ/EL)
o Weight of dish and Center of Mass
o Moment of Inertia of the dish
o Torque needed to spin/flip the Dish

Choosing a Mount Design

Choosing a Solution:

- Two choices: Fork Mount and Equatorial mount
- Equatorial is accurate
- Fork is versatile

Axis Mounting Design

o Equatorial Mount:
> The movement of the Azimuth (here the Declination Axis) makes an arc in the sky.
> The Elevation (a) is set parallel to the earths axis of rotation.

This system is much more accurate than the Fork and needs a much less complicated control system.

Axis Mounting Design

o Fork Mount

- Simple left-right/up/down characteristics
- Allows the dish to go over backwards if it needs to.
- Dish can track large range of orbit paths.

We chose this configuration because of the versatility in what we can track

Final Proposed Design

- 180 degree EL Motion
- 360 degree AZ Motion
o Approx weight:
1100 lbs

Finite Element Analysis (FEA)

Fork design FEA
Tripod stand FEA

Motion Study in Solidworks

Elevation Axis

Azimuth Axis

Simple shaft and Bearing setup

Load bearing Thrust and Ball Bearing setup

Azimuth Axis

Load bearing Thrust and Ball Bearing setup

Bearing Manufacturing

Mechanical Design

Statics and Dynamics:

Key Points of Interest:
oCenter of Mass- The mean location of all system masses.
oMoment of Inertia- A measure of an object's resistance to changes to its rotation. It is the inertia of a rotating body with respect to its rotation.
oDynamic Torque- The torque encountered by a system that is not only in motion, but accelerating.
oStatic Torque- The torque produced at constant velocity (rest or running).

Center of Mass: Solid Works

\square Assigned mass properties

Mass properties of Dish Assembly (Assembly Configuratior Output coordinate Systemi - - default --

One or more components have assigned mass properties: New Dish
Cone
Cone Base v2
Mass $=203.00$ pounds
Volume $=3093.87$ cubic inches
Surface area $=32352.82$ inches ${ }^{\wedge} 2$
Center of mass: (inches)
$X=0.00$
$Y=20.35$
$Z=0.00$

Forces and Foot Pounds

Having a balanced mass is very important in a motion system

Balance ($\mathrm{R}_{\circ} \mathrm{M}=\mathrm{Rm}$)
Reduces driving torque that the motor has to produce

Ballast Manufacturing

Simple shaft and Bearing setup

Dynamic Torque Curve (Elevation)

Max Torque needed $=8.7 \mathrm{ft} \mathrm{lbs}$
EL Torque Dała

Dynamic Torque Curve (Azimuth)

Max Torque Needed $=3.3 \mathrm{ft} \mathrm{lbs}$
AZ Torque Graph

Focal Point

Focal point calculated to be 37.5 inches from vertex of dish with a tolerance within 0.150 " -0.300 "

Focal Point

Transceiver Mount Must be Level
——AC Power
__ DC Power
——Signal
Electrical
_ Serial
茪 Indicator Light

Electrical - Sensors

Absolute Magnetic Shaft Encoder

- 1° step size $=$ at least nine bit resolution $2^{9}=512$ steps

360 deg/512 steps = .7 deg/step

- $6 \% / \mathrm{sec}=1 \mathrm{rpm}$
$180^{\circ} / 30 \mathrm{sec}=6^{\circ} / \mathrm{sec}=360^{\circ} / 60 \mathrm{sec}$
- Magnetic shaft encoder
> Max 15,000 rpm
> Absolute position sensing
> Small size, large operating temperature range
> Analog output from 10-bit DAC
1024 steps or $.35^{\circ}$ /step

Electrical - Motor Modeling

Electrical - Motor Modeling

Time Constant - 67ms

Software - PI Controller Im

Pole-Zero Diagram:
$G_{s}(s)=(P I)\left(\frac{1}{.075(s+13.3)}\right) \quad$ or S-axis
Z- Transform Equation:
$G_{c}(z)=\frac{7.4669 z-7}{z-1}$
Difference Equation:

$$
Y_{c}(n)=7.4669 X_{c}(n)-7 X_{c}(n-1)+Y_{c}(n-1)
$$

Software - SatPC32: Video

Software - Serial Communication

Time (sec)	Logic Placer	AZ Value	EL Value	Azimuth	Elevation	CR		Desired Track Time	180	
0	0	0	0	AZ000.0	ELOOO.O			Desired AZ Displacement	360	Degrees
1	1	8	4	AZ008.0	ELOO4.0			Desired EL Displacement		Degrees
2	0	8	4	AZ008.0	ELO04.0			Divisor Value		Sec to hold
3	0	8	4	4 AZ008.0	ELOO4.0					
4	0	8	4	AZ008.0	ELOO4.0			AZ Increment Value	8	Degrees/Divisor
5	1	16	8	AZ016.0	ELO08.0			EL Increment Value	4	Degrees/Divisor
6	0	16	8	AZ016.0	ELO08.0					
7	0	16	8	AZ016.0	EL008.0					
8	0	16	8	AZ016.0	ELO08.0			Be sure to copy ONLYAZ, EL	fie	ds into HyperTerm
9	1	24	12	AZ024.0	EL012.0					
10	0	24	12	AZ024.0	EL012.0					
11	0	24	12	AZ024.0	EL012.0					
12	0	24	12	AZ024.0	EL012.0					
13	1	32	16	AZ032.0	EL016.0					
14	0	32	16	AZ032.0	EL016.0					
15	0	32	16	AZ032.0	EL016.0					
16	0	32	16	AZ032.0	EL016.0					
17	1	40	20	AZ040.0	ELO20.0					
18	0	40	20	AZ040.0	ELO20.0					
19	0	40	20	AZ040.0	ELO20.0					
20	0	40	20	AZ040.0	ELO20.0					

Software - Serial Communication

- Transmitted Format
> AZ360.0 EL180.0
- Serial Transmit Rate
> 1 Data point/Second

Software - Serial Communication

```
void check_serial(void) {
    CALLcheck_serial=0;
    switch(Serial_State) {
```

case 3:
if (Serial_Error == ERR_OK) \{
if (Buffer_In == 'A') $\quad / /$ Look for 'A'
Serial_State $=4$;
\}
else \{
Serial_State = 3;
\}
\}
break;

```
store_serial_AZ=0;
for (i=NumPos-1; i>0; i--){
    Serial_AZ[i]=Serial_AZ[i-1];
}
/*Pull Float from Incomming, put into Serial_AZ[O]*/
Serial_AZ[0]=0;
Serial_AZ[0]=(float) ((
    ((Incomming[0]-48)*100)+ //convert from ASCII to decimal, 100's place
    ((Incomming[1]-48)*10 ) + //convert from ASCII to decimal, 10's place
    ((Incomming[2]-48)*1 )+ //convert from ASCII to decimal, 1's place
    //Incomming[3] = decimal point
    ((Incomming[4]-48)*.1 ) + //convert from ASCII to decimal, .1's place
    ((Incomming[5]-48)*.01)+0.48));//convert from ASCII to decimal, .01's place
/*Pull Float from Incomming, put into Serial_AZ[O]*/
    //ADD TO THE TIMER ARRAY TOO
for (i=NumPos-1; i>0; i--){
    Serial_AZ_TIME[i]=Serial_AZ_TIME[i-1];
}
Clock_Error=Clock_GetTimeMS(&Current_time);
Serial_AZ_TIME[0]=(((float)(current_time))/1000);
//ADD TO THE TIMER ARRAY TOO
```

CALLcheck_interpolate=1; Start Interpolating
Serial_State $=3$

Software Serial Interpolation

Software - Interpolation

```
void interpolate_serial(void) {
    switch(interpolate_state) {
        case 0:
        if (Serial_AZ[1] > 0){
            dP = (Serial_AZ[0] - Serial_AZ[1]) * 0.1f; //DEFINE CHANGE IN UNIT TIME HERE
            interpolate_out = dP + Serial_AZ[0];
            interpolate_state = 1;
        } else interpolate_state = 0;
    break;
        case 2:
        interpolate_clock_GetTimeMS(&interpolate_time);
        if (interpolate_time >= INTDELAY){
            interpolate_time = 0;
        interpolate_clock_Reset();
        interpolate_count--;
        interpolate_out = dP + interpolate_out;
        interpolate_state = 1;
    } else interpolate_state = 2;
```

 break;

Calibration Techniques - True AZ and EL

o Azimuth
> Align one leg of tripod to true north
o Elevation
> Inclinometer (Shown here)

Calibration Techniques - Repeatability

Wall

- Mount laser on transceiver location
- Point to given spot and record location
- Attempt to recreate position
- Adjust accordingly

Subsystem Videos

Ground Station Budget

Item: Description

gh-Speed Cast Iron Mounted STL Ball Bearing Square-Flange Mount, for 1-1/4" Sh	2	\$103.8	\$207.64
Extra-Grip Two Piece Clamp-on Shaft Collar 1-1/4" Bore, 2-1/2" Outside Diameter, $5 / 8^{\prime \prime}$ Width	2	\$9.69	\$19.38
Partially Keyed Steel Drive Shaft 1-1/4" OD, $1 / 4^{\prime \prime}$ Keyway Width, $36^{\prime \prime}$ Length	1	\$60.26	\$60.26
E52100 Alloy Steel Ball 1" Diameter, Grade 25	5	\$13.05	\$65.25
One-Piece Steel Thrust Ball Bearing for 1-1/4" Shaft Diameter, $2-11 / 32^{\prime \prime} O D$, Shielded	1	\$22.35	\$22.35
Mounting Flange One-Piece Shaft Collars 1-1/4" Bore, 2-1/4" Collar OD, $1^{\prime \prime}$ Overall Width	1	\$43.98	\$43.98
Cast Iron Base-Mounted Babbitt-Lined Bearing Solid, for $2^{\prime \prime}$ Shaft Diameter	2	\$82.60	\$165.20
Two-Piece Clamp-on Shaft Collar Steel, $2^{\prime \prime}$ Bore, $3^{\prime \prime}$ Outside Diameter, $11 / 16^{\prime \prime}$ Width	4	\$11.32	\$45.28
Fully Keyed 1045 Steel Drive Shaft 2" OD, 1/2" Keyway Width, $48^{\prime \prime}$ Length	1	\$146.06	\$146.06
Steel Needle-Roller Bearing Double Sealed for 3/4" Shaft Dia, $1^{\text {" OD, }} 3 / 44^{\text {" Width }}$	2	\$10.34	\$20.68
Hardened Precision Steel Shaft 3/4" Diameter, $12^{\prime \prime}$ Length	1	\$9.60	\$9.60
Black Polyurethane Sheet $1 / 4^{\prime \prime}$ Thick, $12^{\prime \prime} \times 12^{\prime \prime}, 90 \mathrm{~A}$ Durometer	1	\$53.99	\$53.99
Step-Up Clamp-on Shaft Adapter $5 / 8^{\prime \prime}$ Bore, $7 / 8^{\prime \prime}$ Shaft Outside Diameter	1	\$54.91	\$54.91
Two-Piece Clamp-on Shaft Coupling Steel, with Keyway, $3 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$ Bore, 1-1/2" OD	1	\$82.12	\$82.12
Fully Keyed 1045 Steel Drive Shaft 3/4" OD, $3 / 16^{\prime \prime}$ Keyway Width, $3^{\prime \prime}$ Length	1	\$8.48	\$8.48
Extra-Grip Two Piece Clamp-on Shaft Collar 1" Bore, 2-1/4" Outside Diameter, $5 / 8^{\prime \prime}$ Width	1	\$9.13	\$9.13
Steel Ball Bearing--ABEC-1 Dbl Sealed Bearing NO. R16 for 1" Shaft Dia, ${ }^{\prime \prime}$ OD	2	\$11.36	\$22.72
Threaded-Stem Caster W/Total Lock, $5^{\prime \prime} \times 1$ 1-1/4" Rubber Whl, 1/2"-13 Stem	3	\$20.25	\$60.75
Type 416 Stainless Steel Key Stock 3/16" X 3/16", $12^{\prime \prime}$ Length	1	\$11.20	\$11.20
5/8 inch needle bearings	2	\$2.76	\$5.52
7/8 needle bearing	1	\$2.83	\$2.83
$7 / 8$ keyed shaft (3/16 keyway) 9 " length	1	\$20.82	\$20.82
$3 / 4$ needle bearing	1	\$2.83	\$2.83
$3 / 4$ inch diameter keyed shaft (3/16 keyway) 9 " length	1	\$19.16	\$19.16
$1.25 \times 3 / 4 \times 3 / 8$ Roller Flat Sealed Track Roller	3	\$23.43	\$70.29
Two-Piece Clamp-on Shaft Collar Steel, 1-1/4" Bore, 2-1/16" OD, 1/2" Width	2	\$5.17	\$10.34
Dayton DC Motor (50 RPM)	1	\$347.23	\$347.23
Dayton DC Motor (94 RPM)	1	\$347.23	\$347.23
2 " $\times 2$ " $\times 3 / 16^{\prime \prime} \times 24^{\prime}$ Square Tubing	3	\$82.00	\$246.00
$2^{\prime} \times 2^{\prime} \times$. $5^{\prime \prime}$ Plate	3	\$75.00	\$225.00
$6^{\prime \prime} \times 2$ " $\times 3 / 16^{\prime \prime} \times 12^{\prime}$ Rect. Tube	1	\$105.00	\$105.00
$8^{\prime \prime} \times 8^{\prime \prime} \times 1 / 4^{\prime \prime}$ Plate	5	\$9.50	\$47.50
Waterjet Cutting for Brackets and Mounts	1	\$230.00	\$230.00
Waterjet Cutting for Gears for Encoders	1		
Vinal Coated Nylon Tarp (Black)	3	\$58.50	\$175.50
Vinal Adhesive	1	\$18.75	\$18.75
CASE,RACKMNT, $19,88.1 \mathrm{~mm} \mathrm{\times 250mm}$	1	\$51.95	\$51.95
Woods 59007 Decora Style 30-15-10-5 Minute Preset Wall Switch Timer, White, 30-Minute	1	\$13.39	\$13.39
CA-MIC3-SH-NC 3-Pin Micro / Unterminated Shielded Cable (20ft)	2	\$26.30	\$52.60
MA3 Miniature Absolute Magnetic Shaft Encoder	4	\$45.40	\$225.55

Total
\$3326.47

Mechanical

Power Supply
Sensors
Microcontroler
RS232 Communications

Fork Mount
Balast
Ballast Support on Cone Dish
Elevation Shaft (Take down to $1^{\prime \prime}$ for gear)
Water Jet Parts (Taps and Fitting)
Misc Machining (Keyweys, shafts)
Gears
Sensor Mounts
Motor Mounts
Final Assembly
EL Shaft Mounted on Fork
$1^{1 "}$ Groove on AZ Bearing Setup
Tripod Legs

Electrical

Software

Misc

Remaining Tasks

- Mechanical
> Weatherization
> Calibration
- Electrical
> Hardware User Interface Box
- Software
> Further (Redundant) Control Algorithm Testing

Areas of Responsibility

- Hodge (300+ Hours)
> CAD and FEA
> Torque Calculations/Measurements
> Ballast Implementation
> Motor Specifications
- Lyford (300+ Hours)
> Sensors and Electrical
> Fork Design w/ Motors
> Drive Mechanisms and Implementation
> Material Manager / Budget
o Schreiber (300+ Hours)
> Project Manager
> Mechanical Analysis and FEA
> Interpolation Implementation
> Communications
> Motor Controllers

Special Thanks

Vermont Technical College Staff

John Kidder - Use of Catamount Building Space
Bryan Carroll - Use of Catamount Building Space
Carl Wolf - FEA, General Project Guidance
Andre St. Denis - Software Support, General Project Guidance John Murphy - Controller Development, Software and Hardware Support Ingred Van-Steamburg - Ordering Parts, Budget Allocation, Financial Assistance Preston Allen - Supplying Tools and Machinery, Assembly and Construction Assistance Joan Richmond-Hall - Materials Safety Precautions
Roger Howes - CNC Support
Mike Wright - Machine Shop Assistance
Scott Sabol - Green Structural Building Analysis
Sam Colwell - LCD Software Support

Vermont Technical College Students

Aaron Minard - Briefing from previous years
Ben (Student in Design Comm. Class) - Solidworks Models of Motors

Outside Vermont Technical College

David Durgin of Mainly Metals - Water-jet parts
K BeBee Plumbing - Supplying Free Material
Vermont Wireform - CNC/Machine Shop and Machine Time
Mark Schreiber of Granite City Electric - Delivering Material, Providing Dish Heater

Questions?

Join us at the Catamount building for a live demonstration

