Ground Station 2011 Jordan Hodge

Jordan Lyford Wilson Schreiber

Contents

Background Problem Statement Solution Mechanical Areas of Interest Mounting Configuration Statics and Dynamics Focal Point of Dish Electrical Motors Sensors Software Controller SatPC32 Serial Communication Interpolation **Calibration Techniques** Subsystem Videos Budget Timeline Remaining Tasks Responsibilities Special Thanks Questions

Background - CubeSat

CubeSat is 10cm x 10cm x 10cm (10cm ≈ 3.94 inches)
Solar Powered

Utilizes GPS and Celestial Navigation Techniques
Transmits Information from Sensors

•Camera, UV/IR Spectrometer, Electron Flux

Background – CubeSat

Lunar Lander Booster Rapid Prototype Models 3D Solid Model of CubeSat Structure

Background – Ground Station

- VTC developing CubeSat, transmits data
 Continuing where previous groups have left off
- Have to follow CubeSat to receive data (2.4gHz)
- Existing 3-meter parabolic dish antenna
- Low orbit satellite revolves around Earth in minutes, seen for short time per orbit

Problem – Ground Station

- Track a low orbit satellite such as a CubeSat from horizon to horizon in as little as 30 seconds with an accuracy of ± 0.5°
 > 180° /30 seconds=6° /sec
- Move a 3 meter satellite dish
 - > 360° Azimuth (left/right)
 - > 180° Elevation (up/down)

 Interface to PC running SatPC32 (Satellite Tracking Program)

Azimuth and Elevation

Azimuth

 A left to right angle measurement from a fixed point (north in navigation)

- Elevation
 - Angle between the flat plane and the object in the sky (satellite).

Solution

Mechanical Areas of Interest

Axis orientation (EL/AZ or AZ/EL)

Weight of dish and Center of Mass

Moment of Inertia of the dish

Torque needed to spin/flip the Dish

Choosing a Mount Design

Choosing a Solution:

- Two choices: Fork Mount and Equatorial mount
- Equatorial is accurate
- Fork is versatile

Axis Mounting Design

 Equatorial Mount:
 The movement of the Azimuth (here the Declination Axis) makes an arc in the sky.

> The Elevation (a) is set parallel to the earths axis of rotation.

This system is much more accurate than the Fork and needs a much less complicated control system.

Axis Mounting Design

Fork Mount

- Simple left-right/up/down characteristics
- Allows the dish to go over backwards if it needs to.
- Dish can track large range of orbit paths.

We chose this configuration because of the versatility in what we can track

Final Proposed Design ● 180 degree EL Motion • 360 degree AZ

Approx weight:
 1100 lbs

Motion

Finite Element Analysis (FEA)

Fork design FEA

Tripod stand FEA

Motion Study in Solidworks

Elevation Axis

Azimuth Axis

Simple shaft and Bearing setup Load bearing Thrust and Ball Bearing setup

Azimuth Axis

Load bearing Thrust and Ball Bearing setup

Bearing Manufacturing

Mechanical Design

Statics and Dynamics:

Key Points of Interest:

• Center of Mass- The mean location of all system masses.

Moment of Inertia- A measure of an object's resistance to changes to its rotation. It is the inertia of a rotating body with respect to its rotation.

• **Dynamic Torque-** The torque encountered by a system that is not only in motion, but accelerating.

•**Static Torque-** The torque produced at constant velocity (rest or running).

Center of Mass: Solid Works

Assigned mass properties Mass properties of Dish Assembly (Assembly Configuration Output coordinate System: -- default --One or more components have assigned mass properties: New Dish Cone Cone Base v2 Mass = 203.00 pounds Volume = 3093.87 cubic inches Surface area = 32352.82 inches² Center of mass: (inches) X = 0.00Y = 20.35 ← Z = 0.00

Forces and Foot Pounds

Having a balanced mass is very important in a motion system

Balance (R_oM = Rm) Reduces driving torque that the motor has to produce

Ballast Manufacturing

Simple shaft and Bearing setup

Dynamic Torque Curve (Elevation)

Max Torque needed = 8.7 ft lbs

EL Torque Data

Dynamic Torque Curve (Azimuth)

Max Torque Needed = 3.3 ft lbs AZ Torque Graph

Focal Point

Focal point calculated to be 37.5 inches from vertex of dish with a tolerance within 0.150" – 0.300"

Focal Point

Transceiver Mount Must be Level

Electrical - Sensors

Absolute Magnetic Shaft Encoder

- I o step size = at least nine bit resolution
 - 2⁹ = 512 steps 360 deg/512 steps = .7 deg/step
- $6^{\circ}/\text{sec} = 1 \text{ rpm}$

180°/30sec=6°/sec=360°/60sec

- Magnetic shaft encoder
 - > Max 15,000 rpm
 - > Absolute position sensing
 - > Small size, large operating temperature range
 - > Analog output from 10-bit DAC
 - 1024 steps or .35° /step

Electrical – Motor Modeling

Electrical – Motor Modeling

Time Constant – 67ms

Software - PI Controller Im Pole-Zero Diagram: $G_{s}(s) = \left(PI \left(\frac{1}{.075(s+13.3)}\right) \xrightarrow{\text{ind}} -13.3 -6.67 \xrightarrow{\text{ind}} S$

Z-Transform Equation:

$$G_c(z) = \frac{7.4669z - 7}{z - 1}$$

Difference Equation:

$$Y_c(n) = 7.4669 X_c(n) - 7 X_c(n-1) + Y_c(n-1)$$

31

Software – SatPC32: Video

Software – Serial Communication

Time (sec)	Logic Placer	AZ Value	EL Value	Azimuth	Elevation	CR	Desired Track Time	180	Sec
0	0	0	0	AZ000.0	EL000.0		Desired AZ Displacement	360	Degrees
1	1	8	4	AZ008.0	EL004.0		Desired EL Displacement	180	Degrees
2	0	8	4	AZ008.0	EL004.0		Divisor Value	4	Sec to hold
3	0	8	4	AZ008.0	EL004.0				
4	0	8	4	AZ008.0	EL004.0		AZ Increment Value	8	Degrees/Divisor
5	1	16	8	AZ016.0	EL008.0		EL Increment Value	4	Degrees/Divisor
6	0	16	8	AZ016.0	EL008.0				
7	0	16	8	AZ016.0	EL008.0				
8	0	16	8	AZ016.0	EL008.0		Be sure to copy ONLY AZ, EL	AND CR fie	lds into HyperTerm
9	1	24	12	AZ024.0	EL012.0				
10	0	24	12	AZ024.0	EL012.0				
11	0	24	12	AZ024.0	EL012.0				
12	0	24	12	AZ024.0	EL012.0				
13	1	32	16	AZ032.0	EL016.0				
14	0	32	16	AZ032.0	EL016.0				
15	0	32	16	AZ032.0	EL016.0				
16	0	32	16	AZ032.0	EL016.0				
17	1	40	20	AZ040.0	EL020.0				
18	0	40	20	AZ040.0	EL020.0				
19	0	40	20	AZ040.0	EL020.0				
20	0	40	20	AZ040.0	EL020.0				

Software – Serial Communication

Transmitted Format
 > AZ360.0 EL180.0
 Serial Transmit Rate
 > 1 Data point/Second

Software – Serial Communication

```
void check_serial(void){
   CALLcheck_serial=0;
   switch(Serial_State){
```

```
case 3:
```

```
if (Serial_Error == ERR_OK) {
  if (Buffer_In == 'A') {
    Serial_State = 4;
  }
  else {
    Serial_State = 3;
  }
  break;
```

```
//Look for 'A'
```

```
if (store serial AZ==1) {
```

```
store serial AZ=0;
for (i=NumPos-1; i>0; i--) {
 Serial AZ[i]=Serial AZ[i-1];
}
/*Pull Float from Incomming, put into Serial AZ[0]*/
Serial AZ[0]=0;
Serial AZ[0]=(float)((
  ((Incomming[0]-48)*100)+ //convert from ASCII to decimal, 100's place
  ((Incomming[1]-48)*10) + //convert from ASCII to decimal, 10's place
  ((Incomming[2]-48)*1) + //convert from ASCII to decimal, 1's place
  //Incomming[3] = decimal point
  ((Incomming[4]-48)*.1) + //convert from ASCII to decimal, .1's place
  ((Incomming[5]-48)*.01)+0.48));//convert from ASCII to decimal, .01's place
/*Pull Float from Incomming, put into Serial AZ[0]*/
```

```
//ADD TO THE TIMER ARRAY TOO
for (i=NumPos-1; i>0; i--){
   Serial_AZ_TIME[i]=Serial_AZ_TIME[i-1];
}
Clock_Error=Clock_GetTimeMS(&current_time);
Serial_AZ_TIME[0]=(((float)(current_time))/1000);
//ADD TO THE TIMER ARRAY TOO
```

Start Interpolating

Software Serial Interpolation

Software – Interpolation

```
void interpolate_serial(void) {
```

```
switch(interpolate_state){
    case 0:
```

```
if (Serial_AZ[1] > 0){
    dP = (Serial_AZ[0] - Serial_AZ[1]) * 0.1f;
    interpolate_out = dP + Serial_AZ[0];
    interpolate_state = 1;
} else interpolate_state = 0;
```

//DEFINE CHANGE IN UNIT TIME HERE

```
break;
```

case 2:

```
interpolate_clock_GetTimeMS(&interpolate_time);
if (interpolate_time >= INTDELAY){
  interpolate_time = 0;
  interpolate_clock_Reset();
  interpolate_count--;
  interpolate_out = dP + interpolate_out;
  interpolate_state = 1;
} else interpolate state = 2;
```

Calibration Techniques – True AZ and EL

Azimuth

 Align one leg of tripod to true north

Elevation

Inclinometer (Shown here)

Calibration Techniques - Repeatability

Mount laser on transceiver location
Point to given spot and record location
Attempt to recreate position
Adjust accordingly

Ground Station Budget													
Item: Description	Quantity	Price Per	<u>Total</u>										
High-Speed Cast Iron Mounted STL Ball Bearing Square-Flange Mount, for 1-1/4" Shaft Diameter	2	\$103.82	\$207.64										
Extra-Grip Two Piece Clamp-on Shaft Collar 1-1/4" Bore, 2-1/2" Outside Diameter, 5/8" Width	2	\$9.69	\$19.38										
Partially Keyed Steel Drive Shaft 1-1/4" OD, 1/4" Keyway Width, 36" Length	1	\$60.26	\$60.26										
E52100 Alloy Steel Ball 1" Diameter, Grade 25	5	\$13.05	\$65.25										
One-Piece Steel Thrust Ball Bearing for 1-1/4" Shaft Diameter, 2-11/32" OD, Shielded	1	\$22.35	\$22.35										
Mounting Flange One-Piece Shaft Collars 1-1/4" Bore, 2-1/4" Collar OD, 1" Overall Width	1	\$43.98	\$43.98										
Cast Iron Base-Mounted Babbitt-Lined Bearing Solid, for 2" Shaft Diameter	2	\$82.60	\$165.20										
Two-Piece Clamp-on Shaft Collar Steel, 2" Bore, 3" Outside Diameter, 11/16" Width	4	\$11.32	\$45.28										
Fully Keyed 1045 Steel Drive Shaft 2" OD, 1/2" Keyway Width, 48" Length	1	\$146.06	\$146.06										
Steel Needle-Roller Bearing Double Sealed for 3/4" Shaft Dia, 1" OD, 3/4" Width	2	\$10.34	\$20.68										
Hardened Precision Steel Shaft 3/4" Diameter, 12" Length	1	\$9.60	\$9.60										
Black Polyurethane Sheet 1/4" Thick, 12" X 12", 90A Durometer	1	\$53.99	\$53.99										
Step-Up Clamp-on Shaft Adapter 5/8" Bore, 7/8" Shaft Outside Diameter	1	\$54.91	\$54.91										
Two-Piece Clamp-on Shaft Coupling Steel, with Keyway, 3/4" X 5/8" Bore, 1-1/2" OD	1	\$82.12	\$82.12										
Fully Keyed 1045 Steel Drive Shaft 3/4" OD, 3/16" Keyway Width, 3" Length	1	\$8.48	\$8.48										
Extra-Grip Two Piece Clamp-on Shaft Collar 1" Bore, 2-1/4" Outside Diameter, 5/8" Width	1	\$9.13	\$9.13										
Steel Ball BearingABEC-1 Dbl Sealed Bearing NO. R16 for 1" Shaft Dia, 2" OD	2	\$11.36	\$22.72										
Threaded-Stem Caster W/Total Lock, 5" X 1-1/4" Rubber Whl, 1/2"-13 Stem	3	\$20.25	\$60.75										
Type 416 Stainless Steel Key Stock 3/16" X 3/16", 12" Length	1	\$11.20	\$11.20										
5/8 inch needle bearings	2	\$2.76	\$5.52										
7/8 needle bearing	1	\$2.83	\$2.83										
7/8 keved shaft (3/16 kevwav) 9" length	1	\$20.82	\$20.82										
3/4 needle bearing	1	\$2.83	\$2.83										
3/4 inch diameter keved shaft (3/16 keyway) 9" length	1	\$19.16	\$19.16										
1.25x3/4x3/8 Roller Flat Sealed Track Roller	3	\$23.43	\$70.29										
Two-Piece Clamp-on Shaft Collar Steel, 1-1/4" Bore, 2-1/16" OD, 1/2" Width	2	\$5.17	\$10.34										
······································													
Dayton DC Motor (50 RPM)	1	\$347.23	\$347.23										
Dayton DC Motor (94 RPM)	1	\$347.23	\$347.23										
		4	4										
2"x2"x3/16"x 24' Square Tubing	3	\$82.00	\$246.00										
2'x2'x.5" Plate	3	\$75.00	\$225.00										
6"x2"x3/16" x12' Rect. Tube	1	\$105.00	\$105.00										
8"x 8" x 1/4" Plate	5	\$9.50	\$47.50										
Wateriet Cutting for Brackets and Mounts	1	\$230.00	\$230.00										
Wateriet Cutting for Gears for Encoders	1												
Vinal Coated Nylon Tarp (Black)	3	\$58.50	\$175.50										
Vinal Adhesive	1	\$18.75	\$18.75										
CASE,RACKMNT,19 ,88.1mmX250mm	1	\$51.95	\$51.95										
Woods 50007 Decore Style 20 15 10 5 Minute Dresst Well Switch Times White 20 Minute	4	¢10.00	¢12.20										
woods 35007 Decord Style 30-15-10-5 Minute Preset Wall Switch Timer, White, 30-Minute	1	\$13.39	\$13.3A										
CA-MIC3-SH-NC 3-Pin Micro / Unterminated Shielded Cable (20ft)	2	\$26.30	\$52.60										
MA2 Miniature Absolute Magnetic Shaft Encoder	1	\$45.40	\$225.55										

<u>Total</u> \$3326.47

	Ground Station Timeline (1.05)	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15
Mechanical			Mechanical													
Design	Contra (Booth Boothington to	N														
	Space (Roor) Requirements	Y		-				-								<u> </u>
		T	×	<u> </u>											+	<u> </u>
	Fork Mount			V		-		-		-						<u> </u>
	Balast		Y	Y												<u> </u>
	Small Scale Test		•		Y	Y										
	Gears					Y										<u> </u>
	Sensor Mounts				Y											<u> </u>
	Motor Selection and Mounts					Y										
	Preliminary Budget					Y										
Construct							•				•		•			
	Move to Building	Y														
	Small Scale Test					Y	Y									
	Fork Mount					Y	Y									
	Balast						Y			Y						L
	Ballast Support on Cone Dish					_	Y	Y								L
	Elevation Shaft (Take down to 1" for gear)			-			Y									L
	Water Jet Parts (Taps and Fitting)			-			Y	Y		-						<u> </u>
	Misc Machining (Keyweys, shafts)					_	Y									<u> </u>
	Gears							Ý	Y							<u> </u>
	Sensor Mounts						Y	Y V	Y	Y	N					<u> </u>
	Motor Mounts			-				Y	Y V	V	X	V				<u> </u>
	Final Assembly								T V	r	T I	T I				<u> </u>
	1" Groove on AZ Bearing Setup								v						-	<u> </u>
	Tripod Leas			-			Y		•							<u> </u>
	Tripod Assembly							Y	Y							<u> </u>
								F	lect	rica						
	<u>Electrical</u>															
	Power Supply		V													
	Sensors		Y							-						<u> </u>
	Motor Controller				Y		Y									
	Microcontroller			Y	Ý	Y	Y			-						<u> </u>
	RS232 Communications			N	Y	Y	Y									
					•			6	oft.		-					
	<u>Software</u>	Sottware														
	SatPC32 Research	Y	Y			Y	Y	Y								L
	Serial Communication Test						Y									<u> </u>
	Serial Code			N	V	V		-		V	Y	Y	Y Y	Y V	L	<u> </u>
	Encoder Code Mater Captroller Code			IN N	Y N	Y		-	V	Y V	Y Y	Y Y	Y Y	Y Y	L	<u> </u>
	Internelation Code	V	V			T V		-	T	T V	T V	T V	T V	T V		<u> </u>
																L
	Misc.	Misc														
	Group Meeting	Y	Y -	Y	Y.	Y.	Y	Y .	Y -	Y	Y -	Y.	Y -	Y		
	Brandon Meeting	Y			N			N			Ý			Ý		
	Presentation					Y					Y				######	
	Calibrate													Y_		
	System Tests											Y	Y	Y		
Milestones						DESIGN	MOTOR	SMALL			SYSTEM		ALLCOMP			CAL

Remaining Tasks

- Mechanical
 - > Weatherization
 - > Calibration
- Electrical
 - > Hardware User Interface Box
- Software
 - > Further (Redundant) Control Algorithm Testing

Areas of Responsibility

Hodge (300+ Hours)

- > CAD and FEA
- > Torque Calculations/Measurements
- Ballast Implementation
- > Motor Specifications

• Lyford (300+ Hours)

- > Sensors and Electrical
- > Fork Design w/ Motors
- Drive Mechanisms and Implementation
- > Material Manager / Budget

Schreiber (300+ Hours)

- > Project Manager
- > Mechanical Analysis and FEA
- Interpolation Implementation
- Communications
- Motor Controllers

Special Thanks

Vermont Technical College Staff

John Kidder - Use of Catamount Building Space Bryan Carroll - Use of Catamount Building Space Carl Wolf - FEA, General Project Guidance Andre St. Denis - Software Support, General Project Guidance John Murphy - Controller Development, Software and Hardware Support Ingred Van-Steamburg - Ordering Parts, Budget Allocation, Financial Assistance Preston Allen - Supplying Tools and Machinery, Assembly and Construction Assistance Joan Richmond-Hall - Materials Safety Precautions Roger Howes - CNC Support Mike Wright – Machine Shop Assistance Scott Sabol - Green Structural Building Analysis Sam Colwell - LCD Software Support

Vermont Technical College Students

Aaron Minard - Briefing from previous years Ben (Student in Design Comm. Class) - Solidworks Models of Motors

Outside Vermont Technical College

David Durgin of Mainly Metals - Water-jet parts K BeBee Plumbing - Supplying Free Material Vermont Wireform - CNC/Machine Shop and Machine Time Mark Schreiber of Granite City Electric - Delivering Material, Providing Dish Heater

Questions?

Join us at the Catamount building for a live demonstration

- From VTC, Continue down Rte.66

- Take a Left at the Aadco Medical

sign (VTC's logo also on the sign)

with VTC's logo

- Enter the door by the garage door

Furnace St

Aadco Medical

0

(66)