Alaskan Sea Ice Buoy Project

Vermont Technical College April 27, 2009

Project Members

- Dr. Carl Brandon, Team Lead
- Prof. Peter Chapin, Software Developer
- Chad Loseby, Software Developer
- Michael White, Hardware Developer

Outline

- Overview and Background
- Goals and Requirements
- Architecture and Design
- Progress and Future Work
- Feasibility and Duplication

Background

- Researchers at the University of Vermont have been mathematically modeling movement of sea ice in the Arctic
- More data is needed for accurate models
- Vermont Tech was approached to help collect data

Background

- VTC's Aeronautical Engineering Technology program also wanted to gain experience with space technologies and devices
- CubeSat Kit platform available and well suited to task

The Buoy

- Sits on floating sea ice
- Collects environmental data
- Relays data back to Vermont

Goals & Requirements

- Requirements include collecting:
 - Wind speed
 - Absolute wind direction
 - Temperature
 - Location (latitude and longitude)
- Approximately every 15 minutes

Goals & Requirements

- Data must be transmitted back to
 Vermont in a reasonable timeframe
- Buoy must be fault tolerant and capable of running for several months in harsh climate
- Prototype must be designed to be easily duplicated

Top Level Design

- The buoy will consist of:
 - Environmental sensors
 - Microcontroller
 - Satellite Modem
 - Battery
 - Enclosure

Top Level Design

Hardware Specifics

- NRG Systems wind vane, anemometer, temperature sensor
- Honeywell 3-axis magnetometer
- CubeSat Kit Flight Module (TI MSP430)
- NAL Research Iridium Modem and GPS
- Lithium Thionyl Chloride battery

Hardware Specifics

- CubeSat Kit Flight Module handles all computational needs
- Texas Instruments
 MSP430 low power
 microcontroller
 onboard

Consumes 2µA
 while sleeping,
 340µA while awake
 at 3.3V

Hardware Specifics

- NAL Research 9601-DGS-LP combines an Iridium satellite modem and a global positioning (GPS) unit
- The Iridium network's constellation of 66 low orbit satellites, in combination with the modem, allows the buoy to send short messages from anywhere on Earth

Software Architecture

- SPARK, a strict subset of the Ada programming language, was chosen
 - Strongly typed
 - Potentially dangerous features removed
 - Integrity examined and evaluated
- No Ada compiler exists for our platform

Software Architecture

Progress

- Initial goals were lofty
- "End-to-end data flow" achieved
 - Wind direction and temperature read
 - Data flows through microcontroller
 - Transmitted via modem
 - Buoy goes back to sleep

Future Work

- Software:
 - Read and transmit wind speed, magnetic bearing, GPS data
 - Fully implement buffering
 - Create server-side software to handle data

Future Work

- Hardware:
 - Connect magnetometer
 - Construct an appropriate enclosure
 - Design permanent circuitry to better integrate sensors, flight module, modem, and battery

Feasibility, Duplication

- Remaining work very feasible
- Software and hardware costs may be prohibitive
- Work so far easily duplicatable to construct many buoys

Questions?